Waring–Goldbach Problem with Piatetski-Shapiro Primes
Journal de théorie des nombres de Bordeaux, Volume 30 (2018) no. 2, pp. 449-467.

In this paper, we exhibit an asymptotic formula for the number of representations of a large integer as a sum of a fixed power of Piatetski-Shapiro primes, thereby establishing a variant of Waring–Goldbach problem with primes from a sparse sequence.

Dans cet article nous donnons une formule asymptotique pour le nombre de représentations d’un grand entier comme somme de puissances identiques des nombres premiers de Piatetski-Shapiro, établissant donc une variante du problème de Waring–Goldbach pour des suites clairsemées de nombres premiers.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1033
Classification: 11P32, 11P05, 11P55, 11L03, 11L07, 11L15, 11L20, 11B83
Keywords: Waring–Goldbach Problem, Piatetski-Shapiro Primes, Circle Method, Weyl Sums, Exponential Sums, van der Corput’s Method, Vinogradov’s Mean value theorem
Akbal, Yıldırım 1; Güloğlu, Ahmet M. 1

1 Department of Mathematics Bilkent University 06800 Bilkent, Ankara, Turkey
@article{JTNB_2018__30_2_449_0,
     author = {Akbal, Y{\i}ld{\i}r{\i}m and G\"ulo\u{g}lu, Ahmet M.},
     title = {Waring{\textendash}Goldbach {Problem} with {Piatetski-Shapiro} {Primes}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {449--467},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {30},
     number = {2},
     year = {2018},
     doi = {10.5802/jtnb.1033},
     mrnumber = {3891321},
     zbl = {1443.11207},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.1033/}
}
TY  - JOUR
AU  - Akbal, Yıldırım
AU  - Güloğlu, Ahmet M.
TI  - Waring–Goldbach Problem with Piatetski-Shapiro Primes
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2018
SP  - 449
EP  - 467
VL  - 30
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - http://www.numdam.org/articles/10.5802/jtnb.1033/
DO  - 10.5802/jtnb.1033
LA  - en
ID  - JTNB_2018__30_2_449_0
ER  - 
%0 Journal Article
%A Akbal, Yıldırım
%A Güloğlu, Ahmet M.
%T Waring–Goldbach Problem with Piatetski-Shapiro Primes
%J Journal de théorie des nombres de Bordeaux
%D 2018
%P 449-467
%V 30
%N 2
%I Société Arithmétique de Bordeaux
%U http://www.numdam.org/articles/10.5802/jtnb.1033/
%R 10.5802/jtnb.1033
%G en
%F JTNB_2018__30_2_449_0
Akbal, Yıldırım; Güloğlu, Ahmet M. Waring–Goldbach Problem with Piatetski-Shapiro Primes. Journal de théorie des nombres de Bordeaux, Volume 30 (2018) no. 2, pp. 449-467. doi : 10.5802/jtnb.1033. http://www.numdam.org/articles/10.5802/jtnb.1033/

[1] Akbal, Yıldırım; Güloğlu, Ahmet M. Piatetski-Shapiro meets Chebotarev, Acta Arith., Volume 167 (2015) no. 4, pp. 301-325 | DOI | MR | Zbl

[2] Akbal, Yıldırım; Güloğlu, Ahmet M. Waring’s Problem with Piatetski Shapiro Numbers, Mathematika, Volume 62 (2016) no. 2, pp. 524-550 | DOI | MR | Zbl

[3] Bourgain, Jean On the Vinogradov mean value, Proc. Steklov Inst. Math., Volume 296 (2017), pp. 30-40 | DOI | Zbl

[4] Bourgain, Jean; Demeter, Ciprian; Guth, Larry Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three, Ann. Math., Volume 184 (2016) no. 2, pp. 633-682 | DOI | MR | Zbl

[5] Graham, Sidney W.; Kolesnik, Grigori van der Corput’s method of exponential sums, London Mathematical Society Lecture Note Series, 126, Cambridge University Press, 1991 | MR | Zbl

[6] Heath-Brown, D. Roger A new kth derivative estimate for exponential sums via Vinogradov?s mean value, Proc. Steklov Inst. Math., Volume 296 (2017), pp. 88-103 | DOI | Zbl

[7] Hua, Loo-Keng Additive theory of prime numbers, Translations of Mathematical Monographs, 13, American Mathematical Society, 1965, xiii+190 pages | MR | Zbl

[8] Iwaniec, Henryk; Kowalski, Emmanuel Analytic number theory, Colloquium Publications, 53, American Mathematical Society, 2004, xii+615 pages | MR | Zbl

[9] Kumchev, Angel V. On the Piatetski-Shapiro-Vinogradov theorem, J. Théor. Nombres Bordx., Volume 9 (1997) no. 1, pp. 11-23 | DOI | Numdam | MR | Zbl

[10] Kumchev, Angel V.; Wooley, Trevor D. On the Waring-Goldbach problem for eighth and higher powers, J. Lond. Math. Soc., Volume 93 (2016) no. 3, pp. 811-824 | DOI | MR | Zbl

[11] Kumchev, Angel V.; Wooley, Trevor D. On the Waring-Goldbach problem for seventh and higher powers, Monatsh. Math., Volume 183 (2017) no. 2, pp. 303-310 | DOI | MR | Zbl

[12] Piatetski-Shapiro, Ilya I. On the distribution of prime numbers in sequences of the form [f(n)], Mat. Sb., N. Ser., Volume 33 (1953), pp. 559-566 | MR | Zbl

[13] Vaughan, Robert C. The Hardy-Littlewood method, Cambridge Tracts in Mathematics, 125, Cambridge University Press, 1997, xiv+232 pages | MR | Zbl

[14] Wooley, Trevor D. The asymptotic formula in Waring’s problem, Int. Math. Res. Not., Volume 2012 (2012) no. 7, pp. 1485-1504 | DOI | MR | Zbl

[15] Zhang, Deyu; Zhai, Wenguang The Waring-Goldbach problem in thin sets of primes. II, Acta Math., Volume 48 (2005) no. 4, pp. 809-816 | MR | Zbl

Cited by Sources: