On the topology of closed manifolds with quasi-constant sectional curvature
Journal de l’École polytechnique - Mathématiques, Volume 6 (2019), pp. 367-423.

We prove that closed manifolds admitting a generic metric whose sectional curvature is locally quasi-constant are graphs of space forms. In the more general setting of QC spaces where sets of isotropic points are arbitrary, under suitable positivity assumption and for torsion-free fundamental groups, they are still diffeomorphic to connected sums of spherical bundles over the circle.

Nous montrons que les variétés fermées admettant une métrique générique dont la courbure sectionnelle est localement quasi-constante sont des sommes graphées de variétés de courbure constante. Ensuite nous étendons ce résultat au cas des espaces QC dont l’ensemble des points isotropes pourrait être arbitraire en démontrant que, sous une condition de positivité et lorsque leurs groupes fondamentaux sont sans torsion, ils sont difféomorphes à des sommes connexes de fibrés en sphères sur le cercle.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.96
Classification: 53C21,  53C23,  53C25,  57R42
Keywords: Curvature, conformal geometry, topology, curvature leaves, codimension-one isometric immersions, foliations, second fundamental form
Funar, Louis 1

1 Institut Fourier, Laboratoire de Mathématiques UMR 5582, Université Grenoble Alpes CS 40700, 38058 Grenoble, France
@article{JEP_2019__6__367_0,
     author = {Funar, Louis},
     title = {On the topology of closed manifolds with quasi-constant sectional curvature},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques},
     pages = {367--423},
     publisher = {Ecole polytechnique},
     volume = {6},
     year = {2019},
     doi = {10.5802/jep.96},
     mrnumber = {3974473},
     zbl = {07070237},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.96/}
}
TY  - JOUR
AU  - Funar, Louis
TI  - On the topology of closed manifolds with quasi-constant sectional curvature
JO  - Journal de l’École polytechnique - Mathématiques
PY  - 2019
DA  - 2019///
SP  - 367
EP  - 423
VL  - 6
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.96/
UR  - https://www.ams.org/mathscinet-getitem?mr=3974473
UR  - https://zbmath.org/?q=an%3A07070237
UR  - https://doi.org/10.5802/jep.96
DO  - 10.5802/jep.96
LA  - en
ID  - JEP_2019__6__367_0
ER  - 
%0 Journal Article
%A Funar, Louis
%T On the topology of closed manifolds with quasi-constant sectional curvature
%J Journal de l’École polytechnique - Mathématiques
%D 2019
%P 367-423
%V 6
%I Ecole polytechnique
%U https://doi.org/10.5802/jep.96
%R 10.5802/jep.96
%G en
%F JEP_2019__6__367_0
Funar, Louis. On the topology of closed manifolds with quasi-constant sectional curvature. Journal de l’École polytechnique - Mathématiques, Volume 6 (2019), pp. 367-423. doi : 10.5802/jep.96. http://www.numdam.org/articles/10.5802/jep.96/

[1] Alexander, S. Locally convex hypersurfaces of negatively curved spaces, Proc. Amer. Math. Soc., Volume 64 (1977) no. 2, pp. 321-325 | DOI | MR | Zbl

[2] Apanasov, Boris N. Kobayashi conformal metric on manifolds, Chern-Simons and η-invariants, Internat. Math. Res. Notices, Volume 2 (1991) no. 4, pp. 361-382 | DOI | MR | Zbl

[3] Bishop, Richard L. Infinitesimal convexity implies local convexity, Indiana Univ. Math. J., Volume 24 (1974), pp. 169-172 | DOI | MR | Zbl

[4] Bishop, Richard L.; O’Neill, B. Manifolds of negative curvature, Trans. Amer. Math. Soc., Volume 145 (1969), pp. 1-49 | DOI | MR | Zbl

[5] Boju, Valentin; Funar, Louis Espaces à courbure Stanilov quasi-constante, Serdica, Volume 9 (1983) no. 3, pp. 307-308 | MR | Zbl

[6] Boju, Valentin; Popescu, Mariana Espaces à courbure quasi-constante, J. Differential Geom., Volume 13 (1978) no. 3, pp. 373-383 http://projecteuclid.org/euclid.jdg/1214434605 | DOI | MR | Zbl

[7] Cantwell, John; Conlon, Lawrence The dynamics of open, foliated manifolds and a vanishing theorem for the Godbillon-Vey class, Adv. in Math., Volume 53 (1984) no. 1, pp. 1-27 | DOI | MR | Zbl

[8] do Carmo, Manfredo; Dajczer, Marcos; Mercuri, Francesco Compact conformally flat hypersurfaces, Trans. Amer. Math. Soc., Volume 288 (1985) no. 1, pp. 189-203 | DOI | MR | Zbl

[9] Carrière, Yves; Ghys, Étienne Feuilletages totalement géodésiques, An. Acad. Brasil. Ciênc., Volume 53 (1981) no. 3, pp. 427-432 | Zbl

[10] Cartan, E. La déformation des hypersurfaces dans l’espace conforme réel à n5 dimensions, Bull. Soc. math. France, Volume 45 (1917), pp. 57-121 | DOI | Zbl

[11] Cecil, Thomas E.; Ryan, Patrick J. Focal sets of submanifolds, Pacific J. Math., Volume 78 (1978) no. 1, pp. 27-39 http://projecteuclid.org/euclid.pjm/1102806296 | DOI | MR | Zbl

[12] Cecil, Thomas E.; Ryan, Patrick J. Distance functions and umbilic submanifolds of hyperbolic space, Nagoya Math. J., Volume 74 (1979), pp. 67-75 http://projecteuclid.org/euclid.nmj/1118785796 | DOI | MR | Zbl

[13] Cheeger, Jeff; Ebin, David G. Comparison theorems in Riemannian geometry, AMS Chelsea Publishing, Providence, RI, 2008 (Revised reprint of the 1975 original) | DOI | Zbl

[14] Chen, Bang Yen; Yano, Kentaro Special conformally flat spaces and canal hypersurfaces, Tôhoku Math. J. (2), Volume 25 (1973), pp. 177-184 | DOI | MR | Zbl

[15] Chern, Shiing Shen; Simons, James Characteristic forms and geometric invariants, Ann. of Math. (2), Volume 99 (1974), pp. 48-69 | DOI | MR | Zbl

[16] Corlette, Kevin Immersions with bounded curvature, Geom. Dedicata, Volume 33 (1990) no. 2, pp. 153-161 | DOI | MR | Zbl

[17] Dippolito, Paul R. Codimension one foliations of closed manifolds, Ann. of Math. (2), Volume 107 (1978) no. 3, pp. 403-453 | DOI | MR | Zbl

[18] Edwards, Robert; Millett, Kenneth; Sullivan, Dennis Foliations with all leaves compact, Topology, Volume 16 (1977) no. 1, pp. 13-32 | DOI | MR | Zbl

[19] Eisenhart, Luthur Pfahler An introduction to differential geometry, Princeton Mathematical Series, 3, Princeton University Press, Princeton, NJ, 1947 | MR | Zbl

[20] Funar, Louis; Grimaldi, Renata La topologie à l’infini des variétés à géométrie bornée et croissance linéaire, J. Math. Pures Appl. (9), Volume 76 (1997) no. 10, pp. 851-858 | DOI | Zbl

[21] Funar, Louis; Grimaldi, Renata The ends of manifolds with bounded geometry, linear growth and finite filling area, Geom. Dedicata, Volume 104 (2004), pp. 139-148 | DOI | MR | Zbl

[22] Ganchev, G.; Mihova, V. Riemannian manifolds of quasi-constant sectional curvatures, J. reine angew. Math., Volume 522 (2000), pp. 119-141 | DOI | MR | Zbl

[23] Goldman, William M. Conformally flat manifolds with nilpotent holonomy and the uniformization problem for 3-manifolds, Trans. Amer. Math. Soc., Volume 278 (1983) no. 2, pp. 573-583 | DOI | MR | Zbl

[24] Goldman, William M.; Kamishima, Yoshinobu Conformal automorphisms and conformally flat manifolds, Trans. Amer. Math. Soc., Volume 323 (1991) no. 2, pp. 797-810 | DOI | MR | Zbl

[25] Gromov, M. Manifolds of negative curvature, J. Differential Geom., Volume 13 (1978) no. 2, pp. 223-230 http://projecteuclid.org/euclid.jdg/1214434487 | DOI | MR | Zbl

[26] Gromov, M.; Thurston, W. Pinching constants for hyperbolic manifolds, Invent. Math., Volume 89 (1987) no. 1, pp. 1-12 | DOI | MR | Zbl

[27] Guan, Pengfei; Wang, Guofang Conformal deformations of the smallest eigenvalue of the Ricci tensor, Amer. J. Math., Volume 129 (2007) no. 2, pp. 499-526 | DOI | MR | Zbl

[28] Haefliger, André Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), Volume 16 (1962), pp. 367-397 | MR | Zbl

[29] Hermann, Robert Focal points of closed submanifolds of Riemannian spaces, Indag. Math., Volume 25 (1963), pp. 613-628 | DOI | MR | Zbl

[30] Hwang, Cheng Chung Some theorems on the spaces of quasi-constant curvature, J. Math. Res. Exposition, Volume 3 (1983) no. 1, pp. 1-16 (Correction: Ibid., no. 2, p. 140) | MR | Zbl

[31] Izumiya, Shyuichi; Pei, Donghe; Sano, Takasi Singularities of hyperbolic Gauss maps, Proc. London Math. Soc. (3), Volume 86 (2003) no. 2, pp. 485-512 | DOI | MR | Zbl

[32] Kamishima, Yoshinobu Conformally flat manifolds whose development maps are not surjective. I, Trans. Amer. Math. Soc., Volume 294 (1986) no. 2, pp. 607-623 | DOI | MR | Zbl

[33] Kamishima, Yoshinobu; Tan, Ser P. Deformation spaces on geometric structures, Aspects of low-dimensional manifolds (Adv. Stud. Pure Math.), Volume 20, Kinokuniya, Tokyo, 1992, pp. 263-299 | DOI | MR | Zbl

[34] Kapovich, Michael Conformally flat metrics on 4-manifolds, J. Differential Geom., Volume 66 (2004) no. 2, pp. 289-301 http://projecteuclid.org/euclid.jdg/1102538612 | DOI | MR | Zbl

[35] Kuiper, N. H. On conformally-flat spaces in the large, Ann. of Math. (2), Volume 50 (1949), pp. 916-924 | DOI | MR | Zbl

[36] Kulkarni, Ravindra S. Conformally flat manifolds, Proc. Nat. Acad. Sci. U.S.A., Volume 69 (1972), pp. 2675-2676 | DOI | MR | Zbl

[37] Kulkarni, Ravindra S. Index theorems of Atiyah-Bott-Patodi and curvature invariants, Séminaire de Mathématiques Supérieures (Été 1972), 49, Les Presses de l’Université de Montréal, Montréal, Que., 1975 | MR | Zbl

[38] Kulkarni, Ravindra S. Conformal structures and Möbius structures, Conformal geometry (Bonn, 1985/1986) (Aspects Math.), Volume E12, Friedr. Vieweg, Braunschweig, 1988, pp. 1-39 | Zbl

[39] Kulkarni, Ravindra S.; Pinkall, Ulrich A canonical metric for Möbius structures and its applications, Math. Z., Volume 216 (1994) no. 1, pp. 89-129 | DOI | Zbl

[40] Labourie, François Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques, Bull. Soc. math. France, Volume 119 (1991) no. 3, pp. 307-325 | DOI | Zbl

[41] Labourie, François Surfaces convexes dans l’espace hyperbolique et CP 1 -structures, J. London Math. Soc. (2), Volume 45 (1992) no. 3, pp. 549-565 | DOI | MR | Zbl

[42] Lafontaine, Jacques Conformal geometry from the Riemannian viewpoint, Conformal geometry (Bonn, 1985/1986) (Aspects Math.), Volume E12, Friedr. Vieweg, Braunschweig, 1988, pp. 65-92 | DOI | Zbl

[43] Millett, Kenneth C. Compact foliations, Differential topology and geometry (Proc. Colloq. Dijon, 1974) (Lect. Notes in Math.), Volume 484, Springer, Berlin, 1975, pp. 277-287 | DOI | MR | Zbl

[44] Nikolaev, I. G. Stability problems in a theorem of F. Schur, Comment. Math. Helv., Volume 70 (1995) no. 2, pp. 210-234 | DOI | MR | Zbl

[45] Novikov, S. P. The topology of foliations, Trudy Moskov. Mat. Obšč., Volume 14 (1965), pp. 248-278 | MR | Zbl

[46] Pinkall, Ulrich Compact conformally flat hypersurfaces, Conformal geometry (Bonn, 1985/1986) (Aspects Math.), Volume E12, Friedr. Vieweg, Braunschweig, 1988, pp. 217-236 | DOI | Zbl

[47] Reckziegel, Helmut Krümmungsflächen von isometrischen Immersionen in Räume konstanter Krümmung, Math. Ann., Volume 223 (1976) no. 2, pp. 169-181 | DOI | Zbl

[48] Reckziegel, Helmut Completeness of curvature surfaces of an isometric immersion, J. Differential Geom., Volume 14 (1979) no. 1, p. 7-20 (1980) http://projecteuclid.org/euclid.jdg/1214434848 | DOI | MR | Zbl

[49] Schoen, R.; Yau, S.-T. Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math., Volume 92 (1988) no. 1, pp. 47-71 | DOI | MR | Zbl

[50] Schur, F. Über den Zusammenhang der Räume konstanten Krümmungsmasses mit den projectiven Räumen, Math. Ann., Volume 27 (1886), pp. 537-567 | DOI

[51] Smith, Graham Moduli of flat conformal structures of hyperbolic type, Geom. Dedicata, Volume 154 (2011), pp. 47-80 | DOI | MR | Zbl

[52] Spivak, Michael A comprehensive introduction to differential geometry. Vol. IV, Publish or Perish, Inc., Wilmington, Del., 1979 | MR | Zbl

[53] Warner, F. W. Extensions of the Rauch comparison theorem to submanifolds, Trans. Amer. Math. Soc., Volume 122 (1966), pp. 341-356 | DOI | MR | Zbl

[54] Weinstein, Alan Almost invariant submanifolds for compact group actions, J. Eur. Math. Soc. (JEMS), Volume 2 (2000) no. 1, pp. 53-86 | DOI | MR | Zbl

Cited by Sources: