Subcritical contact surgeries and the topology of symplectic fillings
Journal de l’École polytechnique — Mathématiques, Volume 3 (2016), pp. 163-208.

By a result of Eliashberg, every symplectic filling of a three-dimensional contact connected sum is obtained by performing a boundary connected sum on another symplectic filling. We prove a partial generalization of this result for subcritical contact surgeries in higher dimensions: given any contact manifold that arises from another contact manifold by subcritical surgery, its belt sphere is zero in the oriented bordism group Ω * SO (W) of any symplectically aspherical filling W, and in dimension five, it will even be nullhomotopic. More generally, if the filling is not aspherical but is semipositive, then the belt sphere will be trivial in H * (W). Using the same methods, we show that the contact connected sum decomposition for tight contact structures in dimension three does not extend to higher dimensions: in particular, we exhibit connected sums of manifolds of dimension at least five with Stein fillable contact structures that do not arise as contact connected sums. The proofs are based on holomorphic disk-filling techniques, with families of Legendrian open books (so-called “Lobs”) as boundary conditions.

Un résultat d’Eliashberg affirme que tout remplissage symplectique d’une somme connexe de contact en dimension 3 est obtenu par somme connexe au bord d’un autre remplissage symplectique. Nous montrons une généralisation partielle de ce résultat pour les chirurgies de contact sous-critiques en dimension supérieure : étant donnée une variété de contact obtenue à partir d’une autre par chirurgie sous-critique, la cosphère de l’anse est nulle dans le groupe de bordisme orienté Ω * SO (W) de tout remplissage symplectiquement asphérique W. En dimension 5, elle est même homotope à zéro. Plus généralement, si le remplissage n’est pas asphérique mais semi-positif, alors la cosphère de l’anse est triviale dans H * (W). Nous montrons aussi, en utilisant des méthodes similaires, que la décomposition en somme connexe de contact pour les structures de contact tendues en dimension 3 ne s’étend pas en dimension supérieure. Nous exhibons en particulier des sommes connexes de variétés de dimension au moins 5 qui portent une structure de contact Stein remplissable qui ne peut pas se mettre sous la forme d’une somme connexe de contact. Les démonstrations s’appuient sur les techniques de remplissage par disques holomorphes avec, pour conditions au bord, des familles de livres ouverts legendriens (que l’on abrège par « Lob »).

Received:
Accepted:
Published online:
DOI: 10.5802/jep.31
Classification: 57R17, 53D10, 32Q65, 57R65
Keywords: Contact surgery, symplectic filling, holomorphic disks
Mot clés : Chirurgie de contact, remplissage symplectique, disques holomorphes
Ghiggini, Paolo 1; Niederkrüger, Klaus 2, 3; Wendl, Chris 4

1 Laboratoire de Mathématiques Jean Leray BP 92208, 2, Rue de la Houssinière, F-44322 Nantes Cedex 03, France
2 Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, POB 127, H-1364 Budapest, Hungary
3 Institut de mathématiques de Toulouse, Université Paul Sabatier – Toulouse III 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
4 Department of Mathematics, University College London Gower Street, London WC1E 6BT, United Kingdom
@article{JEP_2016__3__163_0,
     author = {Ghiggini, Paolo and Niederkr\"uger, Klaus and Wendl, Chris},
     title = {Subcritical contact surgeries and the~topology of symplectic fillings},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {163--208},
     publisher = {ole polytechnique},
     volume = {3},
     year = {2016},
     doi = {10.5802/jep.31},
     mrnumber = {3477867},
     zbl = {1369.57029},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.31/}
}
TY  - JOUR
AU  - Ghiggini, Paolo
AU  - Niederkrüger, Klaus
AU  - Wendl, Chris
TI  - Subcritical contact surgeries and the topology of symplectic fillings
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2016
SP  - 163
EP  - 208
VL  - 3
PB  - ole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.31/
DO  - 10.5802/jep.31
LA  - en
ID  - JEP_2016__3__163_0
ER  - 
%0 Journal Article
%A Ghiggini, Paolo
%A Niederkrüger, Klaus
%A Wendl, Chris
%T Subcritical contact surgeries and the topology of symplectic fillings
%J Journal de l’École polytechnique — Mathématiques
%D 2016
%P 163-208
%V 3
%I ole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.31/
%R 10.5802/jep.31
%G en
%F JEP_2016__3__163_0
Ghiggini, Paolo; Niederkrüger, Klaus; Wendl, Chris. Subcritical contact surgeries and the topology of symplectic fillings. Journal de l’École polytechnique — Mathématiques, Volume 3 (2016), pp. 163-208. doi : 10.5802/jep.31. http://www.numdam.org/articles/10.5802/jep.31/

[BCS15] Bowden, J.; Crowley, D.; Stipsicz, A. The topology of Stein fillable manifolds in high dimensions II, Geom. Topol., Volume 19 (2015), pp. 2995-3030 | DOI | MR | Zbl

[BEM15] Borman, S.; Eliashberg, Y.; Murphy, E. Existence and classification of overtwisted contact structures in all dimensions, Acta Math., Volume 215 (2015) no. 2, pp. 281-361 | DOI | MR | Zbl

[BG83] Bedford, E.; Gaveau, B. Envelopes of holomorphy of certain 2-spheres in 2 , Amer. J. Math., Volume 105 (1983) no. 4, pp. 975-1009 | DOI | MR | Zbl

[CE12] Cieliebak, K.; Eliashberg, Y. From Stein to Weinstein and back. Symplectic geometry of affine complex manifolds, AMS Colloquium Publications, 59, American Mathematical Society, Providence, RI, 2012, xii+364 pages | Zbl

[Col97] Colin, V. Chirurgies d’indice un et isotopies de sphères dans les variétés de contact tendues, C. R. Acad. Sci. Paris Sér. I Math., Volume 324 (1997) no. 6, pp. 659-663 | DOI | MR | Zbl

[Eli90a] Eliashberg, Y. Filling by holomorphic discs and its applications, Geometry of low-dimensional manifolds, 2 (Durham, 1989) (London Math. Soc. Lecture Note Ser.), Volume 151, Cambridge University Press, Cambridge, 1990, pp. 45-67 | DOI | MR | Zbl

[Eli90b] Eliashberg, Y. Topological characterization of Stein manifolds of dimension >2, Internat. J. Math., Volume 1 (1990) no. 1, pp. 29-46 | DOI | MR | Zbl

[Fra08] Frauenfelder, U. Gromov convergence of pseudoholomorphic disks, J. Fixed Point Theory Appl., Volume 3 (2008) no. 2, pp. 215-271 | DOI | MR | Zbl

[FZ15] Frauenfelder, U.; Zehmisch, K. Gromov compactness for holomorphic discs with totally real boundary conditions, J. Fixed Point Theory Appl., Volume 17 (2015) no. 3, pp. 521-540 | DOI | MR | Zbl

[Gei08] Geiges, H. An introduction to contact topology, Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, Cambridge, 2008, xvi+440 pages | DOI | MR | Zbl

[Gro85] Gromov, M. Pseudoholomorphic curves in symplectic manifolds, Invent. Math., Volume 82 (1985) no. 2, pp. 307-347 | DOI | Zbl

[GZ16] Geiges, H.; Zehmisch, K. The Weinstein conjecture for connected sums, Internat. Math. Res. Notices, Volume 2016 (2016) no. 2, pp. 325-342 | DOI | MR | Zbl

[Hae63] Haefliger, A. Plongements différentiables dans le domaine stable, Comment. Math. Helv., Volume 37 (1962/1963), pp. 155-176 | DOI | Zbl

[Hir94] Hirsch, M. Differential topology, Graduate Texts in Math., 33, Springer-Verlag, New York, 1994, x+222 pages | DOI | MR

[Hof93] Hofer, H. Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math., Volume 114 (1993) no. 3, pp. 515-563 | DOI | MR | Zbl

[HWZ11] Hofer, H.; Wysocki, K.; Zehnder, E. Applications of polyfold theory I: Gromov–Witten theory (2011) (arXiv:1107.2097)

[Laz00] Lazzarini, L. Existence of a somewhere injective pseudo-holomorphic disc, Geom. Funct. Anal., Volume 10 (2000) no. 4, pp. 829-862 | DOI | MR | Zbl

[McD91] McDuff, D. Symplectic manifolds with contact type boundaries, Invent. Math., Volume 103 (1991) no. 3, pp. 651-671 | DOI | MR | Zbl

[Mil65] Milnor, J. Lectures on the h-cobordism theorem, Princeton University Press, Princeton, N.J., 1965, v+116 pages | DOI

[MNW13] Massot, P.; Niederkrüger, K.; Wendl, C. Weak and strong fillability of higher dimensional contact manifolds, Invent. Math., Volume 192 (2013) no. 2, pp. 287-373 | DOI | MR | Zbl

[MS98] McDuff, D.; Salamon, D. Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998, x+486 pages | MR | Zbl

[MS12] McDuff, D.; Salamon, D. J-holomorphic curves and symplectic topology, AMS Colloquium Publications, 52, American Mathematical Society, Providence, RI, 2012, xiv+726 pages | Zbl

[Nie06] Niederkrüger, K. The plastikstufe—a generalization of the overtwisted disk to higher dimensions, Algebraic Geom. Topol., Volume 6 (2006), pp. 2473-2508 | DOI | MR | Zbl

[Nie13] Niederkrüger, K. On fillability of contact manifolds, Université Paul Sabatier - Toulouse III (2013) (Habilitation à diriger des recherches tel-00922320)

[NR11] Niederkrüger, K.; Rechtman, A. The Weinstein conjecture in the presence of submanifolds having a Legendrian foliation, J. Topol. Anal., Volume 3 (2011) no. 4, pp. 405-421 | DOI | MR | Zbl

[OV12] Oancea, A.; Viterbo, C. On the topology of fillings of contact manifolds and applications, Comment. Math. Helv., Volume 87 (2012) no. 1, pp. 41-69 | DOI | MR | Zbl

[Rub97] Ruberman, D. Null-homotopic embedded spheres of codimension one, Tight and taut submanifolds (Berkeley, CA, 1994) (Math. Sci. Res. Inst. Publ.), Volume 32, Cambridge University Press, Cambridge, 1997, pp. 229-232 | MR | Zbl

[Sch99] Schwarz, M. Equivalences for Morse homology, Geometry and topology in dynamics (Winston-Salem, NC, 1998/San Antonio, TX, 1999) (Contemp. Math.), Volume 246, American Mathematical Society, Providence, RI, 1999, pp. 197-216 | DOI | MR | Zbl

[Sma62] Smale, S. On the structure of manifolds, Amer. J. Math., Volume 84 (1962), pp. 387-399 | DOI | Zbl

[vKN05] van Koert, O.; Niederkrüger, K. Open book decompositions for contact structures on Brieskorn manifolds, Proc. Amer. Math. Soc., Volume 133 (2005) no. 12, pp. 3679-3686 | DOI | MR | Zbl

[Wei91] Weinstein, A. Contact surgery and symplectic handlebodies, Hokkaido Math. J., Volume 20 (1991) no. 2, pp. 241-251 | DOI | MR | Zbl

[Wen05] Wendl, C. Finite energy foliations and surgery on transverse links, New York University (2005) (Ph. D. Thesis ProQuest LLC, Ann Arbor, MI, 305467259) | MR

[Yau04] Yau, M.-L. Cylindrical contact homology of subcritical Stein-fillable contact manifolds, Geom. Topol., Volume 8 (2004), pp. 1243-1280 | DOI | MR | Zbl

[Zin08] Zinger, A. Pseudocycles and integral homology, Trans. Amer. Math. Soc., Volume 360 (2008) no. 5, pp. 2741-2765 | DOI | MR | Zbl

Cited by Sources: