Motivated by Gamow’s liquid drop model in the large mass regime, we consider an isoperimetric problem in which the standard perimeter is replaced by , with and a nonlocal energy such that as vanishes. We prove that unit area minimizers are disks for small enough. More precisely, we first show that in dimension , minimizers are necessarily convex, provided that is small enough. In turn, this implies that minimizers have nearly circular boundaries, that is, their boundary is a small Lipschitz perturbation of the circle. Then, using a Fuglede-type argument, we prove that (in arbitrary dimension ) the unit ball in is the unique unit-volume minimizer of the problem among centered nearly spherical sets. As a consequence, up to translations, the unit disk is the unique minimizer. This isoperimetric problem is equivalent to a generalization of the liquid drop model for the atomic nucleus introduced by Gamow, where the nonlocal repulsive potential is given by a radial, sufficiently integrable kernel. In that formulation, our main result states that if the first moment of the kernel is smaller than an explicit threshold, there exists a critical mass such that for any , the disk is the unique minimizer of area up to translations. This is in sharp contrast with the usual case of Riesz kernels, where the problem does not admit minimizers above a critical mass.
Motivé par l’étude du modèle de goutte liquide de Gamow dans le régime des grandes masses, nous considérons un problème isopérimétrique dans lequel le périmètre classique est remplacé par , où et est une énergie non locale telle que lorsque tend vers zéro. Nous montrons que pour assez petit les minimiseurs à aire fixée sont les disques. Pour cela, nous établissons d’abord qu’en dimension , les minimiseurs sont convexes dès que est suffisamment petit. Ceci implique que le bord d’un minimiseur est une petite perturbation Lipschitz d’un cercle. Puis, par un argument à la Fuglede, nous prouvons (en dimension arbitraire ) que si un minimiseur à volume fixé est une perturbation d’une boule au sens précédent, alors c’est une boule. Ce problème isopérimétrique est équivalent à une généralisation du modèle de goutte liquide pour le noyau atomique introduit par Gamow lorsque le potentiel répulsif non local est donné par un noyau suffisamment intégrable. Dans cette formulation, notre résultat principal indique que si le premier moment du noyau est inférieur à un seuil explicite, il existe une masse critique telle que les minimiseurs de masse prescrite sont les disques. Ceci contraste fortement avec le cas classique des noyaux de Riesz, où le problème n’admet pas de minimiseur au-delà d’une masse critique.
Accepted:
Published online:
Keywords: Geometric variational problems, nonlocal isoperimetric problems, nonlocal perimeters, regularity, liquid drop model
Mot clés : Problèmes variationnels géométriques, problèmes isopérimétriques non locaux, périmètres non locaux, régularité, modèle de goutte liquide
@article{JEP_2022__9__63_0, author = {Merlet, Benoit and Pegon, Marc}, title = {Large mass rigidity for a liquid drop model in $2${D} with kernels of finite moments}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques}, pages = {63--100}, publisher = {Ecole polytechnique}, volume = {9}, year = {2022}, doi = {10.5802/jep.178}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.178/} }
TY - JOUR AU - Merlet, Benoit AU - Pegon, Marc TI - Large mass rigidity for a liquid drop model in $2$D with kernels of finite moments JO - Journal de l’École polytechnique - Mathématiques PY - 2022 SP - 63 EP - 100 VL - 9 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.178/ DO - 10.5802/jep.178 LA - en ID - JEP_2022__9__63_0 ER -
%0 Journal Article %A Merlet, Benoit %A Pegon, Marc %T Large mass rigidity for a liquid drop model in $2$D with kernels of finite moments %J Journal de l’École polytechnique - Mathématiques %D 2022 %P 63-100 %V 9 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.178/ %R 10.5802/jep.178 %G en %F JEP_2022__9__63_0
Merlet, Benoit; Pegon, Marc. Large mass rigidity for a liquid drop model in $2$D with kernels of finite moments. Journal de l’École polytechnique - Mathématiques, Volume 9 (2022), pp. 63-100. doi : 10.5802/jep.178. http://www.numdam.org/articles/10.5802/jep.178/
[1] Ground-states for the liquid drop and TFDW models with long-range attraction, J. Math. Phys., Volume 58 (2017) no. 10, 103503, 11 pages | DOI | MR | Zbl
[2] Droplet breakup in the liquid drop model with background potential, Commun. Contemp. Math., Volume 21 (2019) no. 03, 1850022, 23 pages | DOI | MR | Zbl
[3] A nonlocal isoperimetric problem with density perimeter, Calc. Var. Partial Differential Equations, Volume 60 (2021) no. 1, 1, 27 pages | DOI | MR | Zbl
[4] Connected components of sets of finite perimeter and applications to image processing, J. Eur. Math. Soc. (JEMS), Volume 3 (2021) no. 1, pp. 39-92 | DOI | MR | Zbl
[5] Functions of bounded variation and free discontinuity problems, Oxford math. monographs, Clarendon Press, Oxford; New York, 2000 | Zbl
[6] On the asymptotic behaviour of nonlocal perimeters, ESAIM Control Optim. Calc. Var., Volume 25 (2019), 48, 27 pages | DOI | MR | Zbl
[7] Local and global minimality results for a nonlocal isoperimetric problem on , SIAM J. Math. Anal., Volume 46 (2014) no. 4, pp. 2310-2349 | DOI | MR | Zbl
[8] Another look at Sobolev spaces, Optimal control and partial differential equations (Menaldi, J. L.; Rofman, E.; Sulem, A., eds.), IOS, Amsterdam, 2001, pp. 439-455 | Zbl
[9] Minimality of balls in the small volume regime for a general Gamow type functional, 2020 | arXiv
[10] The isoperimetric problem for nonlocal perimeters, Discrete Contin. Dynam. Syst. Ser. S, Volume 11 (2018) no. 3, pp. 425-440 | DOI | MR | Zbl
[11] An old problem resurfaces nonlocally: Gamow’s liquid drops inspire today’s research and applications, Notices Amer. Math. Soc., Volume 64 (2017) no. 11, pp. 1275-1283 | DOI | MR | Zbl
[12] On an open question about functions of bounded variation, Calc. Var. Partial Differential Equations, Volume 15 (2002) no. 4, pp. 519-527 | DOI | MR | Zbl
[13] Measure theory and fine properties of functions, Textbooks in math., CRC Press, Taylor & Francis Group, Boca Raton, 2015 | Zbl
[14] Geometric measure theory, Classics in Math., Springer, Berlin, Heidelberg, 1996 | DOI | Zbl
[15] Isoperimetry and stability properties of balls with respect to nonlocal energies, Comm. Math. Phys., Volume 336 (2015) no. 1, pp. 441-507 | DOI | MR | Zbl
[16] Nonexistence of large nuclei in the liquid drop model, Lett. Math. Phys., Volume 106 (2016) no. 8, pp. 1033-1036 | DOI | MR | Zbl
[17] A compactness lemma and Its application to the existence of minimizers for the liquid drop model, SIAM J. Math. Anal., Volume 47 (2015) no. 6, pp. 4436-4450 | DOI | MR | Zbl
[18] Existence and nonexistence in the liquid drop model, Calc. Var. Partial Differential Equations, Volume 60 (2021) no. 6, 223, 12 pages | DOI | MR | Zbl
[19] Stability in the isoperimetric problem for convex or nearly spherical domains in , Trans. Amer. Math. Soc., Volume 314 (1989) no. 2, pp. 619-638 | MR | Zbl
[20] The quantitative isoperimetric inequality and related topics, Bull. Sci. Math., Volume 5 (2015-10) no. 3, pp. 517-607 | DOI | MR | Zbl
[21] Large volume minimizers of a nonlocal isoperimetric problem: theoretical and numerical approaches, SIAM J. Math. Anal., Volume 50 (2018) no. 3, pp. 3427-3450 | DOI | MR | Zbl
[22] Classical Fourier analysis, Graduate Texts in Math., 249, Springer, New York, NY, 2014 | DOI | MR | Zbl
[23] Isoperimetric problem with a Coulomb repulsive term, Indiana Univ. Math. J., Volume 63 (2014) no. 1, pp. 77-89 | DOI | MR | Zbl
[24] On an isoperimetric problem with a competing nonlocal term I: the planar case, Comm. Pure Appl. Math., Volume 66 (2013) no. 7, pp. 1129-1162 | DOI | MR | Zbl
[25] On an isoperimetric problem with a competing nonlocal term II: the general case, Comm. Pure Appl. Math., Volume 67 (2014) no. 12, pp. 1974-1994 | DOI | MR | Zbl
[26] Low density phases in a uniformly charged liquid, Comm. Math. Phys., Volume 345 (2016) no. 1, pp. 141-183 | DOI | MR | Zbl
[27] Analysis, Graduate studies in math., 14, American Mathematical Society, Providence, RI, 2001 | Zbl
[28] Nonexistence of a minimizer for Thomas-Fermi-Dirac-von Weizsäcker model, Comm. Pure Appl. Math., Volume 67 (2014) no. 10, pp. 1605-1617 | DOI | Zbl
[29] Sets of finite perimeter and geometric variational problems. An introduction to geometric measure theory, Cambridge Studies in Advanced Math., Cambridge University Press, Cambridge, 2012 | DOI | Zbl
[30] An isoperimetric problem with a competing nonlocal singular term, Calc. Var. Partial Differential Equations, Volume 60 (2021) no. 3, 106, 40 pages | DOI | MR | Zbl
[31] Geometric measure theory: a beginner’s guide, Elsevier/AP, Amsterdam, 2016 | Zbl
[32] A nonlocal isoperimetric problem with dipolar repulsion, Comm. Math. Phys., Volume 372 (2019) no. 3, pp. 1059-1115 | DOI | MR
[33] Minimisers of a general Riesz-type problem, Nonlinear Anal., Volume 209 (2021), 112346, 27 pages | DOI | MR | Zbl
[34] A strong form of the isoperimetric inequality in , Complex Variables Theory Appl., Volume 9 (1987) no. 2-3, pp. 241-249 | DOI | MR | Zbl
[35] Large mass minimizers for isoperimetric problems with integrable nonlocal potentials, Nonlinear Anal., Volume 211 (2021), 112395, 48 pages | DOI | MR | Zbl
[36] Ensembles quasi-minimaux avec contrainte de volume et rectifiabilité uniforme, Mém. Soc. Math. France (N.S.), 82, Société Mathématique de France, Paris, 2000 | DOI | Numdam | Zbl
Cited by Sources: