On the rational motivic homotopy category
[Sur la catégorie 𝔸 1 -homotopique rationnelle]
Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 533-583.

Dans ce travail, nous étudions la structure de la catégorie 𝔸 1 -homotopique stable rationnelle sur une base arbitraire. Notre première famille de résultats concerne les six opérations : nous prouvons la pureté absolue, la stabilité des objets constructibles et la dualité de Grothendieck-Verdier pour cette catégorie. Dans un deuxième temps, nous prouvons que la catégorie 𝔸 1 -homotopique stable rationnelle est canoniquement SL-orientée et la comparons à la catégorie des motifs rationnels de Milnor-Witt. Cela permet de calculer les groupes d’𝔸 1 -homotopie stable bivariants en termes des groupes de Chow-Witt supérieurs. Ces résultats s’obtiennent à partir d’énoncés analogues pour la partie négative de la catégorie 𝔸 1 -homotopique stable 2-localisée.

We study the structure of the rational motivic stable homotopy category over general base schemes. Our first class of results concerns the six operations: we prove absolute purity, stability of constructible objects, and Grothendieck–Verdier duality for SH . Next, we prove that SH is canonically SL-oriented; we compare SH with the category of rational Milnor–Witt motives; and we relate the rational bivariant 𝔸 1 -theory to Chow–Witt groups. These results are derived from analogous statements for the minus part of SH[1/2].

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.153
Classification : 14F42, 19E15, 19G12, 11E81, 14C25, 14C35
Keywords: Motivic homotopy, motivic cohomology, six operations, Chow-Witt groups, K-theory, hermitian K-theory
Mot clés : Théorie $\mathbb{A}^1$-homotopique, cohomologie motivique, six opérations, groupes de Chow-Witt, K-théorie, K-théorie hermitienne
Déglise, Frédéric 1 ; Fasel, Jean 2 ; Jin, Fangzhou 3 ; Khan, Adeel A. 4

1 ENS de Lyon, UMPA, UMR 5669 46 allée d’Italie, 69364 Lyon Cedex 07, France
2 Institut Fourier - UMR 5582, Université Grenoble-Alpes CS 40700, 38058 Grenoble Cedex 9, France
3 School of Mathematical Sciences, Tongji University Siping Road 1239, 200092 Shanghai, China
4 Institut des Hautes Études Scientifiques 35 route de Chartres, 91440 Bures-sur-Yvette, France and Institute of Mathematics, Academia Sinica Taipei 10617, Taiwan
@article{JEP_2021__8__533_0,
     author = {D\'eglise, Fr\'ed\'eric and Fasel, Jean and Jin, Fangzhou and Khan, Adeel A.},
     title = {On the rational motivic homotopy category},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {533--583},
     publisher = {Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.153},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.153/}
}
TY  - JOUR
AU  - Déglise, Frédéric
AU  - Fasel, Jean
AU  - Jin, Fangzhou
AU  - Khan, Adeel A.
TI  - On the rational motivic homotopy category
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2021
SP  - 533
EP  - 583
VL  - 8
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.153/
DO  - 10.5802/jep.153
LA  - en
ID  - JEP_2021__8__533_0
ER  - 
%0 Journal Article
%A Déglise, Frédéric
%A Fasel, Jean
%A Jin, Fangzhou
%A Khan, Adeel A.
%T On the rational motivic homotopy category
%J Journal de l’École polytechnique — Mathématiques
%D 2021
%P 533-583
%V 8
%I Ecole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.153/
%R 10.5802/jep.153
%G en
%F JEP_2021__8__533_0
Déglise, Frédéric; Fasel, Jean; Jin, Fangzhou; Khan, Adeel A. On the rational motivic homotopy category. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 533-583. doi : 10.5802/jep.153. http://www.numdam.org/articles/10.5802/jep.153/

[AGV73] Artin, M.; Grothendieck, A.; Verdier, J.-L. Théorie des topos et cohomologie étale des schémas, Lect. Notes in Math., 269, 270, 305, Springer-Verlag, 1972–1973 Séminaire de Géométrie Algébrique du Bois–Marie 1963–64 (SGA 4)

[ALP17] Ananyevskiy, A.; Levine, M.; Panin, I. Witt sheaves and the η-inverted sphere spectrum, J. Topology, Volume 10 (2017) no. 2, pp. 370-385 | DOI | MR | Zbl

[Ana19] Ananyevskiy, A. SL-oriented cohomology theories, 2019 | arXiv

[Ayo07] Ayoub, J. Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique, Astérisque, 314-315, Société Mathématique de France, Paris, 2007 | Numdam | Zbl

[Ayo14] Ayoub, J. La réalisation étale et les opérations de Grothendieck, Ann. Sci. École Norm. Sup. (4), Volume 47 (2014) no. 1, pp. 1-145 | DOI | Zbl

[Bac18] Bachmann, T. Motivic and real étale stable homotopy theory, Compositio Math., Volume 154 (2018) no. 5, pp. 883-917 | DOI | MR | Zbl

[Bal01] Balmer, P. Witt cohomology, Mayer-Vietoris, homotopy invariance and the Gersten conjecture, K-Theory, Volume 23 (2001) no. 1, pp. 15-30 | DOI | MR | Zbl

[Bal05] Balmer, P. Witt groups, Handbook of K-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 539-576 | DOI | MR | Zbl

[BBD82] Beĭlinson, A. A.; Bernstein, J.; Deligne, Pierre Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) (Astérisque), Volume 100, Société Mathématique de France, Paris, 1982, pp. 5-171 | MR | Zbl

[BCD + 20] Bachmann, T.; Calmès, B.; Déglise, F.; Fasel, J.; Østvær, P. A. Milnor-Witt motives, 2020 | arXiv

[BD17] Bondarko, Mikhail; Déglise, Frédéric Dimensional homotopy t-structures in motivic homotopy theory, Adv. Math., Volume 311 (2017), pp. 91-189 | DOI | MR | Zbl

[BF18] Bachmann, Tom; Fasel, Jean On the effectivity of spectra representing motivic cohomology theories, 2018 | arXiv

[BGPW02] Balmer, Paul; Gille, Stefan; Panin, Ivan; Walter, Charles The Gersten conjecture for Witt groups in the equicharacteristic case, Doc. Math., Volume 7 (2002), pp. 203-217 | MR | Zbl

[BH21] Bachmann, Tom; Hoyois, Marc Norms in motivic homotopy theory, Astérisque, Société Mathématique de France, Paris, 2021 (to appear)

[BO74] Bloch, S.; Ogus, A. Gersten’s conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. (4), Volume 7 (1974) no. 4, pp. 181-201 | DOI | MR | Zbl

[Bon14] Bondarko, Mikhail Weights for relative motives: relation with mixed complexes of sheaves, Internat. Math. Res. Notices (2014) no. 17, pp. 4715-4767 | DOI | MR | Zbl

[BW02] Balmer, P.; Walter, C. A Gersten-Witt spectral sequence for regular schemes, Ann. Sci. École Norm. Sup. (4), Volume 35 (2002) no. 1, pp. 127-152 | DOI | Numdam | MR | Zbl

[CD15] Cisinski, D.-C.; Déglise, Frédéric Integral mixed motives in equal characteristics, Doc. Math. (2015), pp. 145-194 (Extra volume: Alexander S. Merkurjev’s sixtieth birthday) | MR | Zbl

[CD16] Cisinski, D.-C.; Déglise, Frédéric Étale motives, Compositio Math., Volume 152 (2016) no. 3, pp. 556-666 | DOI | Zbl

[CD19] Cisinski, D.-C.; Déglise, Frédéric Triangulated categories of mixed motives, Springer Monographs in Math., Springer, Cham, 2019 | DOI | Zbl

[CDH + 20a] Calmès, B.; Dotto, E.; Harpaz, J.; Hebestreit, F.; Land, M.; Moi, K.; Nardin, D.; Nikolaus, T.; Steimle, W. Hermitian K-theory for stable -categories I: Foundations, 2020 | arXiv

[CDH + 20b] Calmès, B.; Dotto, E.; Harpaz, J.; Hebestreit, F.; Land, M.; Moi, K.; Nardin, D.; Nikolaus, T.; Steimle, W. Hermitian K-theory for stable -categories II: Cobordism categories and additivity, 2020 | arXiv

[CDH + 20c] Calmès, B.; Dotto, E.; Harpaz, J.; Hebestreit, F.; Land, M.; Moi, K.; Nardin, D.; Nikolaus, T.; Steimle, W. Hermitian K-theory for stable -categories III: Grothendieck-Witt groups of rings, 2020 | arXiv

[CF14] Calmès, B.; Fasel, Jean Finite Chow-Witt correspondences, 2014 | arXiv

[Cis19] Cisinski, D.-C. Cohomological methods in intersection theory (2019) (arXiv:1905.03478)

[CTHK97] Colliot-Thélène, J.-L.; Hoobler, R.; Kahn, B. The Bloch-Ogus-Gabber theorem, Algebraic K-theory (Toronto, ON, 1996) (Fields Inst. Commun.), Volume 16, American Mathematical Society, Proovidence, RI, 1997, pp. 31-94 | MR | Zbl

[Del77] Deligne, Pierre Cohomologie étale, Lect. Notes in Math., 569, Springer-Verlag, 1977 (Séminaire de Géométrie Algébrique du Bois–Marie SGA 41 2)

[Del87] Deligne, Pierre Le déterminant de la cohomologie, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) (Contemp. Math.), Volume 67, American Mathematical Society, Providence, RI, 1987, pp. 93-177 | DOI | Zbl

[DF20] Déglise, Frédéric; Fasel, Jean The Borel character, 2020 | arXiv

[DFJK19] Déglise, Frédéric; Fasel, Jean; Jin, Fangzhou; Khan, Adeel A. Borel isomorphism and absolute purity, 2019 | arXiv

[DJK21] Déglise, Frédéric; Jin, Fangzhou; Khan, Adeel A. Fundamental classes in motivic homotopy theory, J. Eur. Math. Soc. (JEMS) (2021) (to appear)

[Dég18a] Déglise, Frédéric Bivariant theories in motivic stable homotopy, Doc. Math., Volume 23 (2018), pp. 997-1076 | MR | Zbl

[Dég18b] Déglise, Frédéric Orientation theory in arithmetic geometry, K-Theory—Proceedings of the International Colloquium (Mumbai, 2016), Hindustan Book Agency, New Delhi, 2018, pp. 239-347 | Zbl

[EHK + 20] Elmanto, Elden; Hoyois, Marc; Khan, Adeel A.; Sosnilo, Vladimir; Yakerson, Maria Modules over algebraic cobordism, Forum Math. Pi, Volume 8 (2020), e14, 44 pages | DOI | MR

[EK20a] Elmanto, Elden; Khan, Adeel A. Perfection in motivic homotopy theory, Proc. London Math. Soc. (3), Volume 120 (2020) no. 1, pp. 28-38 | DOI | MR | Zbl

[EK20b] Elmanto, Elden; Kolderup, Håkon On modules over motivic ring spectra, Ann. K-Theory, Volume 5 (2020) no. 2, pp. 327-355 | DOI | MR | Zbl

[EKM08] Elman, R.; Karpenko, N.; Merkurjev, A. The algebraic and geometric theory of quadratic forms, AMS Colloquium Publications, 56, American Mathematical Society, Providence, RI, 2008 | MR | Zbl

[Fas08] Fasel, Jean Groupes de Chow-Witt, Mém. Soc. Math. France (N.S.), 113, Société Mathématique de France, Paris, 2008 | Numdam | MR | Zbl

[Fel19] Feld, N. Morel homotopy modules and Milnor-Witt cycle modules, 2019 | arXiv

[Fel20] Feld, N. Milnor-Witt cycle modules, J. Pure Appl. Algebra, Volume 224 (2020) no. 7, p. 41 | DOI | MR | Zbl

[FS09] Fasel, Jean; Srinivas, V. Chow-Witt groups and Grothendieck-Witt groups of regular schemes, Adv. Math., Volume 221 (2009) no. 1, pp. 302-329 | DOI | MR | Zbl

[Fuj02] Fujiwara, K. A proof of the absolute purity conjecture (after Gabber), Algebraic geometry 2000, Azumino (Hotaka) (Adv. Stud. Pure Math.), Volume 36, Math. Soc. Japan, Tokyo, 2002, pp. 153-183 | DOI | MR | Zbl

[Ful98] Fulton, W. Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1998 | MR | Zbl

[Gar19] Garkusha, Grigory Reconstructing rational stable motivic homotopy theory, Compositio Math., Volume 155 (2019) no. 7, pp. 1424-1443 | DOI | MR | Zbl

[Gil07] Gille, S. A graded Gersten-Witt complex for schemes with a dualizing complex and the Chow group, J. Pure Appl. Algebra, Volume 208 (2007) no. 2, pp. 391-419 | DOI | MR | Zbl

[Gro64] Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Publ. Math. Inst. Hautes Études Sci., Volume 20 (1964), pp. 5-259 | DOI

[Gro77] Grothendieck, A. Cohomologie -adique et fonctions L, Lect. Notes in Math., 589, Springer-Verlag, 1977 Séminaire de Géométrie Algébrique du Bois–Marie 1965–66 (SGA 5)

[Har66] Hartshorne, Robin Residues and duality, Lect. Notes in Math., 20, Springer-Verlag, Berlin-New York, 1966 | MR | Zbl

[Hoy14] Hoyois, Marc A quadratic refinement of the Grothendieck-Lefschetz-Verdier trace formula, Algebraic Geom. Topol., Volume 14 (2014) no. 6, pp. 3603-3658 | DOI | MR | Zbl

[Héb11] Hébert, D. Structure de poids à la Bondarko sur les motifs de Beilinson, Compositio Math., Volume 147 (2011) no. 5, pp. 1447-1462 | DOI | MR | Zbl

[ILO14] Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents (Illusie, L.; Laszlo, Y.; Orgogozo, F., eds.), Astérisque, 363-364, Société Mathématique de France, Paris, 2014 | Zbl

[Jac17] Jacobson, J. Real cohomology and the powers of the fundamental ideal in the Witt ring, Ann. K-Theory, Volume 2 (2017) no. 3, pp. 357-385 | DOI | MR | Zbl

[Jin16] Jin, Fangzhou Borel–Moore motivic homology and weight structure on mixed motives, Math. Z., Volume 283 (2016) no. 3, pp. 1149-1183 | DOI | MR | Zbl

[Kha16] Khan, Adeel A. Motivic homotopy theory in derived algebraic geometry, Ph. D. Thesis, Universität Duisburg-Essen (2016) https://www.preschema.com/thesis/thesis.pdf

[Kha19] Khan, Adeel A. Virtual fundamental classes of derived stacks I, 2019 | arXiv

[Kha21] Khan, Adeel A. Voevodsky’s criterion for constructible categories of coefficients (2021) (Preprint, available at https://www.preschema.com/papers/six.pdf)

[Kne77] Knebusch, M. Symmetric bilinear forms over algebraic varieties, Conference on Quadratic Forms—1976 (Kingston, Ont., 1976) (Queen’s Papers in Pure and Appl. Math.), Volume 46, 1977, pp. 103-283 | Zbl

[Lam05] Lam, T. Y. Introduction to quadratic forms over fields, Graduate Studies in Math., 67, American Mathematical Society, Providence, RI, 2005 | MR | Zbl

[Lur09] Lurie, Jacob Higher topos theory, Annals of Math. Studies, 170, Princeton University Press, Princeton, NJ, 2009 | DOI | MR | Zbl

[Lur12] Lurie, Jacob Higher algebra (2012) (Preprint, available at https://www.math.ias.edu/~lurie/papers/HigherAlgebra.pdf)

[Lur18] Lurie, Jacob Spectral algebraic geometry (2018) (Preprint, available at https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf)

[Mor04] Morel, F. On the motivic π 0 of the sphere spectrum, Axiomatic, enriched and motivic homotopy theory (NATO Sci. Ser. II Math. Phys. Chem.), Volume 131, Kluwer Acad. Publ., 2004, pp. 219-260 | DOI | MR

[Mor06] Morel, F. Rational stable splitting of Grassmannians and rational motivic sphere spectrum, 2006

[Mor12] Morel, F. 𝔸 1 -algebraic topology over a field, Lect. Notes in Math., 2052, Springer, Heidelberg, 2012

[MV99] Morel, F.; Voevodsky, V. 𝔸 1 -homotopy theory of schemes, Publ. Math. Inst. Hautes Études Sci. (1999) no. 90, pp. 45-143 | DOI | MR

[Pan10] Panin, I. Homotopy invariance of the sheaf W Nis and of its cohomology, Quadratic forms, linear algebraic groups, and cohomology (Dev. Math.), Volume 18, Springer, New York, 2010, pp. 325-335 | DOI | MR | Zbl

[PW19] Panin, I.; Walter, C. On the motivic commutative ring spectrum BO, St. Petersburg Math. J., Volume 30 (2019) no. 6, p. 933–972 | MR | Zbl

[Rob15] Robalo, Marco K-theory and the bridge from motives to noncommutative motives, Adv. Math., Volume 269 (2015), pp. 399-550 | DOI | MR | Zbl

[RØ08] Röndigs, Oliver; Østvær, Paul Arne On modules over motivic ring spectra, Adv. Math., Volume 219 (2008) no. 2, p. 689–727 | Zbl

[Sch94] Scheiderer, Claus Real and étale cohomology, Lect. Notes in Math., 1588, Springer-Verlag, Berlin, 1994 | Zbl

[Sch00] Scholl, A. Integral elements in K-theory and products of modular curves, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) (NATO Sci. Ser. C Math. Phys. Sci.), Volume 548, Kluwer Acad. Publ., 2000, pp. 467-489 | MR | Zbl

[Sch17] Schlichting, M. Hermitian K-theory, derived equivalences and Karoubi’s fundamental theorem, J. Pure Appl. Algebra, Volume 221 (2017) no. 7, pp. 1729-1844 | DOI | MR | Zbl

[Spi99] Spivakovsky, M. A new proof of D. Popescu’s theorem on smoothing of ring homomorphisms, J. Amer. Math. Soc., Volume 12 (1999) no. 2, pp. 381-444 | DOI | MR | Zbl

[Spi18] Spitzweck, Markus A commutative 1 -spectrum representing motivic cohomology over Dedekind domains, Mém. Soc. Math. France (N.S.), 157, Société Mathématique de France, Paris, 2018 | DOI | MR | Zbl

[ST15] Schlichting, M.; Tripathi, G. S. Geometric models for higher Grothendieck-Witt groups in 𝔸 1 -homotopy theory, Math. Ann., Volume 362 (2015) no. 3-4, pp. 1143-1167 | DOI | MR | Zbl

[Sta21] Stacks project authors The Stacks project, https://stacks.math.columbia.edu, 2021

[Tho84] Thomason, R. W. Absolute cohomological purity, Bull. Soc. math. France, Volume 112 (1984) no. 3, pp. 397-406 | DOI | Numdam | MR | Zbl

[TT90] Thomason, R. W.; Trobaugh, T. Higher algebraic K-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III (Progress in Math.), Volume 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247-435 | DOI | MR

Cité par Sources :