Nous considérons l’équation de transport par un champ de gradient avec une petite perturbation visqueuse
We consider a transport equation by a gradient vector field with a small viscous perturbation
Accepté le :
Publié le :
Keywords: Transport equation, gradient flow, vanishing viscosity limit, parabolic equation, minimal control time, semiclassical Schrödinger operator
Mot clés : Équation de transport, flot gradient, limite de viscosité évanescente, équation parabolique, temps minimal de contrôle, opérateur de Schrödinger semiclassique
@article{JEP_2021__8__439_0, author = {Laurent, Camille and L\'eautaud, Matthieu}, title = {On uniform observability of gradient flows in the vanishing viscosity limit}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques}, pages = {439--506}, publisher = {Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.151}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jep.151/} }
TY - JOUR AU - Laurent, Camille AU - Léautaud, Matthieu TI - On uniform observability of gradient flows in the vanishing viscosity limit JO - Journal de l’École polytechnique - Mathématiques PY - 2021 SP - 439 EP - 506 VL - 8 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.151/ DO - 10.5802/jep.151 LA - en ID - JEP_2021__8__439_0 ER -
%0 Journal Article %A Laurent, Camille %A Léautaud, Matthieu %T On uniform observability of gradient flows in the vanishing viscosity limit %J Journal de l’École polytechnique - Mathématiques %D 2021 %P 439-506 %V 8 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.151/ %R 10.5802/jep.151 %G en %F JEP_2021__8__439_0
Laurent, Camille; Léautaud, Matthieu. On uniform observability of gradient flows in the vanishing viscosity limit. Journal de l’École polytechnique - Mathématiques, Tome 8 (2021), pp. 439-506. doi : 10.5802/jep.151. https://www.numdam.org/articles/10.5802/jep.151/
[ABB20] A comprehensive introduction to sub-Riemannian geometry, Cambridge Studies in Advanced Math., 181, Cambridge University Press, Cambridge, 2020 | MR | Zbl
[All98] Contrôle analytique de l’équation des ondes et de l’équation de Schrödinger sur des surfaces de révolution, Comm. Partial Differential Equations, Volume 23 (1998) no. 9-10, pp. 1493-1556 | DOI | MR | Zbl
[AM19a] Asymptotic analysis of an advection-diffusion equation and application to boundary controllability, Asymptot. Anal., Volume 112 (2019) no. 1-2, pp. 59-106 | DOI | MR | Zbl
[AM19b] On the controllability of an advection-diffusion equation with respect to the diffusion parameter: asymptotic analysis and numerical simulations, Acta Math. Appl. Sinica (English Ser.), Volume 35 (2019) no. 1, pp. 54-110 | DOI | MR | Zbl
[Bes78] Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb. (3), 93, Springer-Verlag, Berlin-New York, 1978 | MR | Zbl
[BP20a] Uniform controllability of a Stokes problem with a transport term in the zero-diffusion limit, SIAM J. Control Optim., Volume 58 (2020) no. 3, pp. 1597-1625 | DOI | MR | Zbl
[BP20b] Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term, 2020 | HAL
[CF96] Global exact controllability of the
[CFKS87] Schrödinger operators with application to quantum mechanics and global geometry, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987 | Zbl
[CG05] Singular optimal control: A linear
[Cha43] Stochastic problems in physics and astronomy, Rev. Modern Phys., Volume 15 (1943), pp. 1-89 | DOI | MR
[CMS20] Small-time global exact controllability of the Navier-Stokes equation with Navier slip-with-friction boundary conditions, J. Eur. Math. Soc. (JEMS), Volume 22 (2020) no. 5, pp. 1625-1673 | DOI | MR | Zbl
[Cor96] On the controllability of the
[Cor07] Control and nonlinearity, Math. Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007 | MR | Zbl
[Daf00] Hyperbolic conservation laws in continuum physics, Springer-Verlag, Berlin, 2000 | Zbl
[DGLLPN20] The exit from a metastable state: Concentration of the exit point distribution on the low energy saddle points, part 1, J. Math. Pures Appl. (9), Volume 138 (2020), pp. 242-306 | DOI | MR | Zbl
[DL09] Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time, SIAM J. Control Optim., Volume 48 (2009) no. 2, pp. 521-550 | DOI | MR | Zbl
[DR77] A general theory of observation and control, SIAM J. Control Optim., Volume 15 (1977) no. 2, pp. 185-220 | DOI | MR | Zbl
[DR20] Pollicott-Ruelle spectrum and Witten Laplacians, J. Eur. Math. Soc. (JEMS) (2020) (to appear)
[DS99] Spectral asymptotics in the semi-classical limit, London Math. Society Lect. Note Series, 268, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[ET74] Analyse convexe et problèmes variationnels, Dunod–Gauthier-Villars, Paris, 1974 | Zbl
[Eva98] Partial differential equations, Graduate Studies in Math., American Mathematical Society, Providence, RI, 1998 | Zbl
[FI96] Controllability of evolution equations, Lect. Notes Series, 34, Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul, 1996 | MR | Zbl
[GG07] On the uniform controllability of the Burgers equation, SIAM J. Control Optim., Volume 46 (2007), pp. 1211-1238 | DOI | MR
[GG08] Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit, Asymptot. Anal., Volume 60 (2008), pp. 61-100 | DOI | MR | Zbl
[GG09] Uniform controllability of a transport equation in zero diffusion-dispersion limit, Math. Models Methods Appl. Sci., Volume 19 (2009), pp. 1567-1601 | DOI | MR | Zbl
[GL07] Singular optimal control for a transport-diffusion equation, Comm. Partial Differential Equations, Volume 32 (2007), pp. 1813-1836 | DOI | MR | Zbl
[Gla10] A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit, J. Funct. Anal., Volume 258 (2010), pp. 852-868 | DOI | MR | Zbl
[Hel88] Semi-classical analysis for the Schrödinger operator and applications, Lect. Notes in Math., 1336, Springer-Verlag, Berlin, 1988 | DOI | Zbl
[HKL15] Geometric analysis of the linear Boltzmann equation I. Trend to equilibrium, Ann. PDE, Volume 1 (2015) no. 1, 3, 84 pages | DOI | MR | Zbl
[HKN04] Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach, Mat. Contemp., Volume 26 (2004), pp. 41-85 | MR | Zbl
[HN06] Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary, Mém. Soc. Math. France (N.S.), 105, Société Mathématique de France, Paris, 2006 | DOI | Numdam | Zbl
[HS84] Multiple wells in the semiclassical limit. I, Comm. Partial Differential Equations, Volume 9 (1984) no. 4, pp. 337-408 | DOI | MR
[HS85] Puits multiples en mécanique semi-classique IV. Étude du complexe de Witten, Comm. Partial Differential Equations, Volume 10 (1985) no. 3, pp. 245-340 | DOI | Zbl
[Kru70] First order quasilinear equations with several independent variables. (Russian), Mat. Sb. (N.S.), Volume 81 (1970), pp. 228-255
[LB20] Global null-controllability and nonnegative-controllability of slightly superlinear heat equations, J. Math. Pures Appl. (9), Volume 135 (2020), pp. 103-139 | DOI | MR | Zbl
[Lee13] Introduction to smooth manifolds, Graduate Texts in Math., 218, Springer, New York, 2013 | MR | Zbl
[Lio88] Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués 2. Perturbations, Recherches en Math. Appliquées, 9, Masson, Paris, 1988 | Zbl
[Lis12] A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation, Comptes Rendus Mathématique, Volume 350 (2012) no. 11-12, pp. 591-595 | DOI | MR | Zbl
[Lis14] An application of a conjecture due to Ervedoza and Zuazua concerning the observability of the heat equation in small time to a conjecture due to Coron and Guerrero concerning the uniform controllability of a convection-diffusion equation in the vanishing viscosity limit, Systems Control Lett., Volume 69 (2014), pp. 98-102 | DOI | MR
[Lis15] Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transport-diffusion equation, J. Differential Equations, Volume 259 (2015) no. 10, pp. 5331-5352 | DOI | MR | Zbl
[LL16] Uniform observability estimates for linear waves, ESAIM Control Optim. Calc. Var., Volume 22 (2016) no. 4, pp. 1097-1136 | DOI | MR | Zbl
[LL21a] Observability of the heat equation, geometric constants in control theory, and a conjecture of Luc Miller, Anal. PDE (2021) (to appear) | DOI
[LL21b] On uniform controllability of 1D transport equations in the vanishing viscosity limit (2021) (work in progress)
[LL21c] The cost function for the approximate control of waves (2021) (work in progress)
[LP10] Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian, Ann. Fac. Sci. Toulouse Math. (6), Volume 19 (2010) no. 3-4, pp. 735-809 http://afst.cedram.org/item?id=AFST_2010__19_3-4_735_0 | DOI | Numdam | MR | Zbl
[LR95] Contrôle exact de l’équation de la chaleur, Comm. Partial Differential Equations, Volume 20 (1995), pp. 335-356 | DOI
[LSU68] Linear and quasilinear equations of parabolic type, Translations of Math. Monographs, 23, American Mathematical Society, Providence, R.I., 1968 | MR
[LY86] On the parabolic kernel of the Schrödinger operator, Acta Math., Volume 156 (1986) no. 3-4, pp. 153-201 | Zbl
[Léa10] Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems, J. Funct. Anal., Volume 258 (2010), pp. 2739-2778 | DOI | MR | Zbl
[Léa12] Uniform controllability of scalar conservation laws in the vanishing viscosity limit, SIAM J. Control Optim., Volume 50 (2012) no. 3, pp. 1661-1699 | DOI | MR | Zbl
[Léa18] Sur quelques questions de prolongement unique, de propagation et de contrôle, Habilitation à diriger des recherches, Université Paris Diderot (2018) (http://leautaud.perso.math.cnrs.fr/files/HdR.pdf)
[Mar14] Small time global null controllability for a viscous Burgers’ equation despite the presence of a boundary layer, J. Math. Pures Appl. (9), Volume 102 (2014) no. 2, pp. 364-384 | DOI | MR | Zbl
[Mic19] About small eigenvalues of the Witten Laplacian, Pure Appl. Anal., Volume 1 (2019) no. 2, pp. 149-206 | DOI | MR | Zbl
[Mil04] Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time, J. Differential Equations, Volume 204 (2004) no. 1, pp. 202-226 | DOI | MR | Zbl
[Mün18] Numerical estimations of the cost of boundary controls for the equation
[RS80] Methods of modern mathematical physics I. Functional analysis, Academic Press, Inc., New York, 1980 | Zbl
[Sim82] Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.), Volume 7 (1982) no. 3, pp. 447-526 | DOI | Zbl
[Sim83] Instantons, double wells and large deviations, Bull. Amer. Math. Soc. (N.S.), Volume 8 (1983) no. 2, pp. 323-326 | DOI | MR | Zbl
[SM79] The exit problem: a new approach to diffusion across potential barriers, SIAM J. Appl. Math., Volume 36 (1979) no. 3, pp. 604-623 | DOI | MR | Zbl
[Var67] Diffusion processes in a small time interval, Comm. Pure Appl. Math., Volume 20 (1967), pp. 659-685 | DOI | MR | Zbl
[Wit82] Supersymmetry and Morse theory, J. Differential Geometry, Volume 17 (1982) no. 4, p. 661-692 (1983) http://projecteuclid.org/euclid.jdg/1214437492 | DOI | MR | Zbl
Cité par Sources :