On non-local ergodic Jacobi semigroups: spectral theory, convergence-to-equilibrium and contractivity
Journal de l’École polytechnique — Mathématiques, Volume 8 (2021), pp. 331-378.

In this paper, we introduce and study non-local Jacobi operators, which generalize the classical (local) Jacobi operators. We show that these operators extend to generators of ergodic Markov semigroups with unique invariant probability measures and study their spectral and convergence properties. In particular, we derive a series expansion of the semigroup in terms of explicitly defined polynomials, which generalize the classical Jacobi orthogonal polynomials. In addition, we give a complete characterization of the spectrum of the non-self-adjoint generator and semigroup. We show that the variance decay of the semigroup is hypocoercive with explicit constants, which provides a natural generalization of the spectral gap estimate. After a random warm-up time, the semigroup also decays exponentially in entropy and is both hypercontractive and ultracontractive. Our proofs hinge on the development of commutation identities, known as intertwining relations, between local and non-local Jacobi operators and semigroups, with the local objects serving as reference points for transferring properties from the local to the non-local case.

Dans cet article, nous introduisons et étudions des opérateurs de Jacobi non locaux, qui généralisent les opérateurs de Jacobi classiques (locaux). Nous montrons que ces opérateurs s’étendent aux générateurs de semi-groupes de Markov ergodiques avec des mesures de probabilité invariantes uniques et étudions leurs propriétés spectrales et de convergence. En particulier, nous dérivons un développement en série du semi-groupe en termes de polynômes explicitement définis, qui généralisent les polynômes orthogonaux de Jacobi classiques. De plus, nous donnons une caractérisation complète du spectre du générateur et du semi-groupe non auto-adjoint. Nous montrons que la convergence de la variance du semi-groupe est hypocoercive avec des constantes explicites, ce qui fournit une généralisation naturelle de l’estimation donnée par le trou spectral. Après un temps de préchauffage aléatoire, le semi-groupe décroît également de manière exponentielle en entropie et est à la fois hypercontractif et ultracontractif. Nos preuves s’articulent autour du développement d’identités de commutation, appelées relations d’entrelacement, entre opérateurs et semi-groupes de Jacobi locaux et non locaux, les objets locaux servant de points de référence pour le transfert de propriétés du cas local au cas non local.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.148
Classification: 37A30, 47D06, 47G20, 60J75
Keywords: Markov semigroups, spectral theory, non-self-adjoint operators, convergence to equilibrium, hypercontractivity, ultracontractivity, heat kernel estimates
Mot clés : Semi-groupes de Markov, théorie spectrale, opérateurs non auto-adjoints, convergence vers l’équilibre, hypercontractivité, ultracontractivité, estimations du noyau de la chaleur
Cheridito, Patrick 1; Patie, Pierre 2; Srapionyan, Anna 3; Vaidyanathan, Aditya 3

1 Department of Mathematics, ETH Zurich Rämistrasse 101, 8092 Zurich, Switzerland
2 School of Operations Research and Information Engineering, Cornell University Ithaca, NY 14853, USA
3 Center for Applied Mathematics, Cornell University Ithaca, NY 14853, USA
@article{JEP_2021__8__331_0,
     author = {Cheridito, Patrick and Patie, Pierre and Srapionyan, Anna and Vaidyanathan, Aditya},
     title = {On non-local ergodic {Jacobi} semigroups: spectral theory, convergence-to-equilibrium and contractivity},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {331--378},
     publisher = {Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.148},
     mrnumber = {4218161},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.148/}
}
TY  - JOUR
AU  - Cheridito, Patrick
AU  - Patie, Pierre
AU  - Srapionyan, Anna
AU  - Vaidyanathan, Aditya
TI  - On non-local ergodic Jacobi semigroups: spectral theory, convergence-to-equilibrium and contractivity
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2021
SP  - 331
EP  - 378
VL  - 8
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.148/
DO  - 10.5802/jep.148
LA  - en
ID  - JEP_2021__8__331_0
ER  - 
%0 Journal Article
%A Cheridito, Patrick
%A Patie, Pierre
%A Srapionyan, Anna
%A Vaidyanathan, Aditya
%T On non-local ergodic Jacobi semigroups: spectral theory, convergence-to-equilibrium and contractivity
%J Journal de l’École polytechnique — Mathématiques
%D 2021
%P 331-378
%V 8
%I Ecole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.148/
%R 10.5802/jep.148
%G en
%F JEP_2021__8__331_0
Cheridito, Patrick; Patie, Pierre; Srapionyan, Anna; Vaidyanathan, Aditya. On non-local ergodic Jacobi semigroups: spectral theory, convergence-to-equilibrium and contractivity. Journal de l’École polytechnique — Mathématiques, Volume 8 (2021), pp. 331-378. doi : 10.5802/jep.148. http://www.numdam.org/articles/10.5802/jep.148/

[1] Achleitner, Franz; Arnold, Anton; Carlen, Eric A. On multi-dimensional hypocoercive BGK models, Kinet. and Relat. Mod., Volume 11 (2018) no. 4, pp. 953-1009 | DOI | MR | Zbl

[2] Ané, Cécile; Blachère, Sébastien; Chafaï, Djalil; Fougères, Pierre; Gentil, Ivan; Malrieu, Florent; Roberto, Cyril; Scheffer, Grégory Sur les inégalités de Sobolev logarithmiques, Panoramas & Synthèses, 10, Société Mathématique de France, Paris, 2000 | Zbl

[3] Bakry, D. Remarques sur les semigroupes de Jacobi, Hommage à P. A. Meyer et J. Neveu (Astérisque), Volume 236, Société Mathématique de France, Paris, 1996, pp. 23-39 | Numdam | Zbl

[4] Bakry, Dominique Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, Séminaire de Probabilités, XXI (Lect. Notes in Math.), Volume 1247, Springer, Berlin, 1987, pp. 137-172 | DOI | Numdam | Zbl

[5] Bakry, Dominique; Gentil, Ivan; Ledoux, Michel Analysis and geometry of Markov diffusion operators, Grundlehren Math. Wiss., 348, Springer, Cham, 2014 | DOI | MR | Zbl

[6] Baudoin, Fabrice Bakry-Émery meet Villani, J. Funct. Anal., Volume 273 (2017) no. 7, pp. 2275-2291 | DOI | MR | Zbl

[7] Berg, Christian; Durán, Antonio J. A transformation from Hausdorff to Stieltjes moment sequences, Ark. Mat., Volume 42 (2004) no. 2, pp. 239-257 | DOI | MR | Zbl

[8] Bertoin, Jean Subordinators: examples and applications, Lectures on probability theory and statistics (Saint-Flour, 1997) (Lect. Notes in Math.), Volume 1717, Springer, Berlin, 1999, pp. 1-91 | DOI | MR | Zbl

[9] Bogdan, Krzysztof; Byczkowski, Tomasz; Kulczycki, Tadeusz; Ryznar, Michal; Song, Renming; Vondraček, Zoran Potential analysis of stable processes and its extensions, Lect. Notes in Math., 1980, Springer-Verlag, Berlin, 2009 | DOI | MR

[10] Borodin, Alexei; Olshanski, Grigori Markov dynamics on the Thoma cone: a model of time-dependent determinantal processes with infinitely many particles, Electron. J. Probab., Volume 18 (2013), 75, 43 pages | DOI | MR | Zbl

[11] Borodin, Andrei N.; Salminen, Paavo Handbook of Brownian motion—facts and formulae, Probability and its Applications, Birkhäuser Verlag, Basel, 2002 | DOI | Zbl

[12] Böttcher, Björn; Schilling, René; Wang, Jian Lévy. III, Lect. Notes in Math., 2099, Springer, Cham, 2013 | DOI | Zbl

[13] Braaksma, B. L. J. Asymptotic expansions and analytic continuations for a class of Barnes-integrals, Compositio Math., Volume 15 (1964), p. 239-341 (1964) | MR | Zbl

[14] Chafaï, Djalil Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities, J. Math. Kyoto Univ., Volume 44 (2004) no. 2, pp. 325-363 | DOI | MR | Zbl

[15] Chazal, M.; Kyprianou, A.; Patie, P. A transformation for Lévy processes with one-sided jumps with applications, 2010 | arXiv

[16] Christensen, Ole An introduction to frames and Riesz bases, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Cham, 2016 | DOI | Zbl

[17] Cuchiero, Christa; Larsson, Martin; Svaluto-Ferro, Sara Polynomial jump-diffusions on the unit simplex, Ann. Appl. Probab., Volume 28 (2018) no. 4, pp. 2451-2500 | DOI | MR | Zbl

[18] Da Prato, Giuseppe An introduction to infinite-dimensional analysis, Universitext, Springer-Verlag, Berlin, 2006 | DOI | Zbl

[19] Delbaen, Freddy; Shirakawa, Hiroshi An Interest Rate Model with Upper and Lower Bounds, Asia-Pacific Financial Markets, Volume 9 (2002) no. 3, pp. 191-209 | DOI | Zbl

[20] Demni, N.; Zani, M. Large deviations for statistics of the Jacobi process, Stochastic Process. Appl., Volume 119 (2009) no. 2, pp. 518-533 | DOI | MR | Zbl

[21] Dolbeault, Jean; Mouhot, Clément; Schmeiser, Christian Hypocoercivity for linear kinetic equations conserving mass, Trans. Amer. Math. Soc., Volume 367 (2015) no. 6, pp. 3807-3828 | DOI | MR | Zbl

[22] Driver, Bruce K. Analysis tools with applications (2003) (http://www.math.ucsd.edu/~bdriver/231-02-03/Lecture_Notes/PDE-Anal-Book/analpde1.pdf)

[23] Dynkin, E. B. Markov processes. Vols. I, II, Grundlehren Math. Wiss., 121; 122, Academic Press Inc., New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965 | Zbl

[24] Engel, Klaus-Jochen; Nagel, Rainer One-parameter semigroups for linear evolution equations, Graduate Texts in Math., 194, Springer-Verlag, New York, 2000 | MR | Zbl

[25] Ethier, Stewart N.; Kurtz, Thomas G. Markov processes, Wiley Series in Proba. and Math. Stat., John Wiley & Sons, Inc., New York, 1986 | DOI

[26] Fontenas, Éric Sur les minorations des constantes de Sobolev et de Sobolev logarithmiques pour les opérateurs de Jacobi et de Laguerre, Séminaire de Probabilités, XXXII (Lect. Notes in Math.), Volume 1686, Springer, Berlin, 1998, pp. 14-29 | DOI | Numdam | MR | Zbl

[27] Gourieroux, Christian; Jasiak, Joann Multivariate Jacobi process with application to smooth transitions, J. Econometrics, Volume 131 (2006) no. 1-2, pp. 475-505 | DOI | MR | Zbl

[28] Griffiths, Robert C.; Jenkins, Paul A.; Spanó, Dario Wright-Fisher diffusion bridges, Theoret. Population Biol., Volume 122 (2018), pp. 67-77 | DOI | Zbl

[29] Griffiths, Robert C.; Spanó, Dario Diffusion processes and coalescent trees, Probability and mathematical genetics (London Math. Soc. Lecture Note Ser.), Volume 378, Cambridge Univ. Press, Cambridge, 2010, pp. 358-379 | DOI | MR | Zbl

[30] Gross, Leonard Logarithmic Sobolev inequalities, Amer. J. Math., Volume 97 (1975) no. 4, pp. 1061-1083 | DOI | MR

[31] Huillet, Thierry On Wright-Fisher diffusion and its relatives, J. Stat. Mech. Theory Exp. (2007) no. 11, P11006, 30 pages | Zbl

[32] Ismail, Mourad E. H. Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Math. and its Appl., 98, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl

[33] Kyprianou, Andreas E. Fluctuations of Lévy processes with applications, Universitext, Springer, Heidelberg, 2014 | DOI | Zbl

[34] Miclo, Laurent; Patie, Pierre On a gateway between continuous and discrete Bessel and Laguerre processes, Ann. H. Lebesgue, Volume 2 (2019), pp. 59-98 | DOI | MR | Zbl

[35] Miclo, Laurent; Patie, Pierre On interweaving relations, J. Funct. Anal., Volume 280 (2021) no. 3, p. 108816, 53 | DOI | MR | Zbl

[36] Mischler, S.; Mouhot, C. Exponential stability of slowly decaying solutions to the kinetic-Fokker-Planck equation, Arch. Rational Mech. Anal., Volume 221 (2016) no. 2, pp. 677-723 | DOI | MR | Zbl

[37] Misra, O. P.; Lavoine, J. L. Transform analysis of generalized functions, North-Holland Math. Studies, 119, North-Holland Publishing Co., Amsterdam, 1986 | MR | Zbl

[38] Pal, Soumik Wright-Fisher diffusion with negative mutation rates, Ann. Probab., Volume 41 (2013) no. 2, pp. 503-526 | DOI | MR | Zbl

[39] Patie, P. A refined factorization of the exponential law, Bernoulli, Volume 17 (2011) no. 2, pp. 814-826 | DOI | MR | Zbl

[40] Patie, Pierre; Savov, Mladen Bernstein-gamma functions and exponential functionals of Lévy processes, Electron. J. Probab., Volume 23 (2018), 75, 101 pages | DOI | Zbl

[41] Patie, Pierre; Savov, Mladen Spectral expansion of non-self-adjoint generalized Laguerre semigroups, Mem. Amer. Math. Soc., American Mathematical Society, Providence, RI, 2019 (to appear)

[42] Patie, Pierre; Savov, Mladen; Zhao, Yixuan Intertwining, excursion theory and Krein theory of strings for non-self-adjoint Markov semigroups, Ann. Probab., Volume 47 (2019) no. 5, pp. 3231-3277 | DOI | MR | Zbl

[43] Patie, Pierre; Vaidyanathan, Aditya A spectral theoretical approach for hypocoercivity applied to some degenerate hypoelliptic, and non-local operators, Kinet. and Relat. Mod., Volume 13 (2020) no. 3, pp. 479-506 | DOI | MR | Zbl

[44] Pazy, A. Semigroups of linear operators and applications to partial differential equations, Applied Math. Sciences, 44, Springer-Verlag, New York, 1983 | DOI | MR | Zbl

[45] Pearson, J. Michael Best constants in Sobolev inequalities for ultraspherical polynomials, Arch. Rational Mech. Anal., Volume 116 (1992) no. 4, pp. 361-374 | DOI | MR | Zbl

[46] Rogers, L. C. G.; Pitman, J. W. Markov functions, Ann. Probab., Volume 9 (1981) no. 4, pp. 573-582 | DOI | MR | Zbl

[47] Rudin, Walter Functional analysis, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973 | Zbl

[48] Sato, Ken-iti Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Math., 68, Cambridge University Press, Cambridge, 1999 | Zbl

[49] Schilling, René L.; Song, Renming; Vondraček, Zoran Bernstein functions, De Gruyter Studies in Math., 37, Walter de Gruyter & Co., Berlin, 2012 | DOI | MR | Zbl

[50] Szegő, Gábor Orthogonal polynomials, American Math. Soc., Colloquium Publ., XXIII, American Mathematical Society, Providence, RI, 1975 | Zbl

[51] Villani, Cédric Hypocoercivity, Mem. Amer. Math. Soc., 202, no. 950, American Mathematical Society, Providence, RI, 2009 | DOI

Cited by Sources: