Decay estimates for large velocities in the Boltzmann equation without cutoff
[Décroissance aux grandes vitesses pour les solutions de l’équation de Boltzmann sans troncature angulaire]
Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 143-183.

Cet article considère des solutions a priori f=f(t,x,v) de l’équation de Boltzmann sans hypothèse d’homogénéité spatiale et avec conditions périodiques x𝕋 d , pour des interactions de type potentiels durs ou modérément mous sans troncature angulaire. Sous l’hypothèse a priori que les champs hydrodynamiques associés à la solution : masse locale fdv, énergie locale f|v| 2 dv, entropie locale flnfdv, restent bornés au cours du temps, nous montrons des bornes sur les « moments polynomiaux ponctuels » sup x,v f(t,x,v)(1+|v| q ), q0. Ces moments sont propagés dans le cas des potentiels modérément mous, et apparaissent dans le cas des potentiels durs. Dans le cas des potentiels modérément mous, nous montrons également l’apparition de moments ponctuels d’ordre bas. Toutes ces bornes conditionnelles sont uniformes en temps grand, dès lors que les bornes sur les champs hydrodynamiques sont elles-mêmes uniformes en temps grand.

We consider solutions f=f(t,x,v) to the full (spatially inhomogeneous) Boltzmann equation with periodic spatial conditions x𝕋 d , for hard and moderately soft potentials without the angular cutoff assumption, and under the a priori assumption that the main hydrodynamic fields, namely the local mass fdv and local energy f|v| 2 dv and local entropy flnfdv, are controlled along time. We establish quantitative estimates of propagation in time of “pointwise polynomial moments”, i.e., sup x,v f(t,x,v)(1+|v|) q , q0. In the case of hard potentials, we also prove appearance of these moments for all q0. In the case of moderately soft potentials, we prove the appearance of low-order pointwise moments. All these conditional bounds are uniform as t goes to +, conditionally to the bounds on the hydrodynamic fields being uniform.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.113
Classification : 35Q82, 76P05, 35Q20
Keywords: Boltzmann equation, non-cutoff, grazing collisions, regularity, decay, maximum principle, a priori solutions
Mot clés : Équation de Boltzmann, sans troncature angulaire, collisions rasantes, régularité, décroissance, principe du maximum, solutions a priori
Imbert, Cyril 1 ; Mouhot, Clément 2 ; Silvestre, Luis 3

1 CNRS & Department of Mathematics and Applications, École Normale Supérieure (Paris) 45 rue d’Ulm, 75005 Paris, France
2 University of Cambridge, DPMMS, Centre for Mathematical Sciences, Wilberforce road, Cambridge CB3 0WA, UK
3 Mathematics Department, University of Chicago, Chicago, Illinois 60637, USA
@article{JEP_2020__7__143_0,
     author = {Imbert, Cyril and Mouhot, Cl\'ement and Silvestre, Luis},
     title = {Decay estimates for large velocities in {the~Boltzmann} equation without cutoff},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {143--183},
     publisher = {Ecole polytechnique},
     volume = {7},
     year = {2020},
     doi = {10.5802/jep.113},
     mrnumber = {4033752},
     zbl = {07129392},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.113/}
}
TY  - JOUR
AU  - Imbert, Cyril
AU  - Mouhot, Clément
AU  - Silvestre, Luis
TI  - Decay estimates for large velocities in the Boltzmann equation without cutoff
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2020
SP  - 143
EP  - 183
VL  - 7
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.113/
DO  - 10.5802/jep.113
LA  - en
ID  - JEP_2020__7__143_0
ER  - 
%0 Journal Article
%A Imbert, Cyril
%A Mouhot, Clément
%A Silvestre, Luis
%T Decay estimates for large velocities in the Boltzmann equation without cutoff
%J Journal de l’École polytechnique — Mathématiques
%D 2020
%P 143-183
%V 7
%I Ecole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.113/
%R 10.5802/jep.113
%G en
%F JEP_2020__7__143_0
Imbert, Cyril; Mouhot, Clément; Silvestre, Luis. Decay estimates for large velocities in the Boltzmann equation without cutoff. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 143-183. doi : 10.5802/jep.113. http://www.numdam.org/articles/10.5802/jep.113/

[1] Alexandre, Radjesvarane; Desvillettes, L.; Villani, C.; Wennberg, B. Entropy dissipation and long-range interactions, Arch. Rational Mech. Anal., Volume 152 (2000) no. 4, pp. 327-355 | DOI | MR | Zbl

[2] Alexandre, Radjesvarane; El Safadi, Mouhamad Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations. I. Non-cutoff case and Maxwellian molecules, Math. Models Methods Appl. Sci., Volume 15 (2005) no. 6, pp. 907-920 | DOI | MR | Zbl

[3] Alexandre, Radjesvarane; El Safadi, Mouhamad Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations. II. Non cutoff case and non Maxwellian molecules, Discrete Contin. Dynam. Systems, Volume 24 (2009) no. 1, pp. 1-11 | DOI | MR

[4] Alexandre, Radjesvarane; Morimoto, Yoshinori; Ukai, Seiji; Xu, Chao-Jiang; Yang, Tong Uncertainty principle and kinetic equations, J. Funct. Anal., Volume 255 (2008) no. 8, pp. 2013-2066 | DOI | MR | Zbl

[5] Alexandre, Radjesvarane; Morimoto, Yoshinori; Ukai, Seiji; Xu, Chao-Jiang; Yang, Tong Regularizing effect and local existence for the non-cutoff Boltzmann equation, Arch. Rational Mech. Anal., Volume 198 (2010) no. 1, pp. 39-123 | DOI | MR | Zbl

[6] Alexandre, Radjesvarane; Villani, C. On the Boltzmann equation for long-range interactions, Comm. Pure Appl. Math., Volume 55 (2002) no. 1, pp. 30-70 | DOI | MR | Zbl

[7] Alonso, Ricardo; Cañizo, José A.; Gamba, Irene; Mouhot, Clément A new approach to the creation and propagation of exponential moments in the Boltzmann equation, Comm. Partial Differential Equations, Volume 38 (2013) no. 1, pp. 155-169 | DOI | MR | Zbl

[8] Alonso, Ricardo; Gamba, Irene M.; Tasković, Maja Exponentially-tailed regularity and time asymptotic for the homogeneous Boltzmann equation, 2017 | arXiv

[9] Arkeryd, Leif L estimates for the space-homogeneous Boltzmann equation, J. Statist. Phys., Volume 31 (1983) no. 2, pp. 347-361 | DOI | MR | Zbl

[10] Bobylev, Alexander V. Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems, J. Statist. Phys., Volume 88 (1997) no. 5-6, pp. 1183-1214 | DOI | MR | Zbl

[11] Bobylev, Alexander V.; Gamba, Irene M. Upper Maxwellian bounds for the Boltzmann equation with pseudo-Maxwell molecules, Kinet. and Relat. Mod., Volume 10 (2017) no. 3, pp. 573-585 | DOI | MR | Zbl

[12] Bobylev, Alexander V.; Gamba, Irene M.; Panferov, V. A. Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions, J. Statist. Phys., Volume 116 (2004) no. 5-6, pp. 1651-1682 | DOI | MR | Zbl

[13] Briant, Marc Instantaneous exponential lower bound for solutions to the Boltzmann equation with Maxwellian diffusion boundary conditions, Kinet. and Relat. Mod., Volume 8 (2015) no. 2, pp. 281-308 | DOI | MR | Zbl

[14] Briant, Marc Instantaneous filling of the vacuum for the full Boltzmann equation in convex domains, Arch. Rational Mech. Anal., Volume 218 (2015) no. 2, pp. 985-1041 | DOI | MR | Zbl

[15] Briant, Marc; Einav, Amit On the Cauchy problem for the homogeneous Boltzmann-Nordheim equation for bosons: local existence, uniqueness and creation of moments, J. Statist. Phys., Volume 163 (2016) no. 5, pp. 1108-1156 | DOI | MR | Zbl

[16] Cameron, Stephen; Silvestre, Luis; Snelson, Stanley Global a priori estimates for the inhomogeneous Landau equation with moderately soft potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 35 (2018) no. 3, pp. 625-642 | arXiv | DOI | MR | Zbl

[17] Carleman, Torsten Sur la théorie de l’équation intégrodifférentielle de Boltzmann, Acta Math., Volume 60 (1933) no. 1, pp. 91-146 | DOI | MR | Zbl

[18] Carleman, Torsten Problèmes mathématiques dans la théorie cinétique des gaz, Publ. Sci. Inst. Mittag-Leffler, 2, Almqvist & Wiksells Boktryckeri Ab, Uppsala, 1957 | MR | Zbl

[19] Cercignani, Carlo The Boltzmann equation and its applications, Applied Math. Sciences, 67, Springer-Verlag, New York, 1988 | DOI | MR | Zbl

[20] Constantin, Peter; Vicol, Vlad Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal., Volume 22 (2012) no. 5, pp. 1289-1321 | DOI | MR | Zbl

[21] Desvillettes, L. Some applications of the method of moments for the homogeneous Boltzmann and Kac equations, Arch. Rational Mech. Anal., Volume 123 (1993) no. 4, pp. 387-404 | DOI | MR | Zbl

[22] Desvillettes, Laurent; Mouhot, Clément Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations with soft potentials, Asymptot. Anal., Volume 54 (2007) no. 3-4, pp. 235-245 | MR | Zbl

[23] Desvillettes, Laurent; Mouhot, Clément Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions, Arch. Rational Mech. Anal., Volume 193 (2009) no. 2, pp. 227-253 | DOI | MR | Zbl

[24] Desvillettes, Laurent; Wennberg, Bernt Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff, Comm. Partial Differential Equations, Volume 29 (2004) no. 1-2, pp. 133-155 | DOI | MR | Zbl

[25] DiPerna, R. J.; Lions, P.-L. On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. (2), Volume 130 (1989) no. 2, pp. 321-366 | DOI | MR | Zbl

[26] Elmroth, T. Global boundedness of moments of solutions of the Boltzmann equation for forces of infinite range, Arch. Rational Mech. Anal., Volume 82 (1983) no. 1, pp. 1-12 | DOI | MR | Zbl

[27] Filbet, Francis; Mouhot, Clément Analysis of spectral methods for the homogeneous Boltzmann equation, Trans. Amer. Math. Soc., Volume 363 (2011) no. 4, pp. 1947-1980 | DOI | MR | Zbl

[28] Gamba, Irene M.; Panferov, V.; Villani, C. Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation, Arch. Rational Mech. Anal., Volume 194 (2009) no. 1, pp. 253-282 | DOI | MR | Zbl

[29] Gamba, Irene M; Pavlović, Nataša; Tasković, Maja On pointwise exponentially weighted estimates for the Boltzmann equation, SIAM J. Math. Anal., Volume 51 (2019) no. 5, pp. 3921-3955 | arXiv | DOI | MR | Zbl

[30] Golse, François; Imbert, Cyril; Mouhot, Clément; Vasseur, Alexis F. Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 19 (2019) no. 1, pp. 253-295 | DOI | MR | Zbl

[31] Gualdani, M. P.; Mischler, S.; Mouhot, C. Factorization of non-symmetric operators and exponential H-theorem, Mém. Soc. Math. France (N.S.), 153, Société Mathématique de France, Paris, 2017 | Zbl

[32] Gustafsson, Tommy L p -estimates for the nonlinear spatially homogeneous Boltzmann equation, Arch. Rational Mech. Anal., Volume 92 (1986) no. 1, pp. 23-57 | DOI | MR | Zbl

[33] Gustafsson, Tommy Global L p -properties for the spatially homogeneous Boltzmann equation, Arch. Rational Mech. Anal., Volume 103 (1988) no. 1, pp. 1-38 | DOI | MR | Zbl

[34] Henderson, Christopher; Snelson, Stanley C smoothing for weak solutions of the inhomogeneous Landau equation, 2017 | arXiv

[35] Henderson, Christopher; Snelson, Stanley; Tarfulea, Andrei Local existence, lower mass bounds, and smoothing for the Landau equation, J. Differential Equations, Volume 266 (2019) no. 2-3, pp. 1536-1577 | arXiv | DOI | Zbl

[36] Huo, Zhaohui; Morimoto, Yoshinori; Ukai, Seiji; Yang, Tong Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff, Kinet. and Relat. Mod., Volume 1 (2008) no. 3, pp. 453-489 | DOI | MR | Zbl

[37] Ikenberry, E.; Truesdell, C. On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory. I, J. Rational Mech. Anal., Volume 5 (1956), pp. 1-54 | MR | Zbl

[38] Imbert, Cyril; Silvestre, Luis Weak Harnack inequality for the Boltzmann equation without cut-off, 2017 to appear in J. Eur. Math. Soc. (JEMS) | HAL

[39] Imbert, Cyril; Silvestre, Luis The Schauder estimate for kinetic integral equations, 2018 | arXiv

[40] Lu, Xuguang Conservation of energy, entropy identity, and local stability for the spatially homogeneous Boltzmann equation, J. Statist. Phys., Volume 96 (1999) no. 3-4, pp. 765-796 | DOI | MR | Zbl

[41] Lu, Xuguang; Mouhot, Clément On measure solutions of the Boltzmann equation, part I: moment production and stability estimates, J. Differential Equations, Volume 252 (2012) no. 4, pp. 3305-3363 | DOI | MR | Zbl

[42] Maxwell, J. C. On the dynamical theory of gases, J. Philos. Trans. Roy. Soc. London, Volume 157 (1867), pp. 49-88

[43] Mischler, S.; Mouhot, C. Cooling process for inelastic Boltzmann equations for hard spheres. II. Self-similar solutions and tail behavior, J. Statist. Phys., Volume 124 (2006) no. 2-4, pp. 703-746 | DOI | MR | Zbl

[44] Mischler, Stéphane; Wennberg, Bernst On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 16 (1999) no. 4, pp. 467-501 | DOI | Numdam | MR | Zbl

[45] Morimoto, Yoshinori; Ukai, Seiji; Xu, Chao-Jiang; Yang, Tong Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff, Discrete Contin. Dynam. Systems, Volume 24 (2009) no. 1, pp. 187-212 | DOI | MR | Zbl

[46] Morimoto, Yoshinori; Yang, Tong Local existence of polynomial decay solutions to the Boltzmann equation for soft potentials, Anal. Appl. (Singap.), Volume 13 (2015) no. 6, pp. 663-683 | DOI | MR | Zbl

[47] Mouhot, Clément Quantitative lower bounds for the full Boltzmann equation. I. Periodic boundary conditions, Comm. Partial Differential Equations, Volume 30 (2005) no. 4-6, pp. 881-917 | DOI | MR | Zbl

[48] Povzner, A. Ja. On the Boltzmann equation in the kinetic theory of gases, Mat. Sb. (N.S.), Volume 58 (100) (1962), pp. 65-86 | MR

[49] Silvestre, Luis A new regularization mechanism for the Boltzmann equation without cut-off, Comm. Math. Phys., Volume 348 (2016) no. 1, pp. 69-100 | DOI | MR | Zbl

[50] Silvestre, Luis Upper bounds for parabolic equations and the Landau equation, J. Differential Equations, Volume 262 (2017) no. 3, pp. 3034-3055 | DOI | MR | Zbl

[51] Truesdell, C. On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory. II, J. Rational Mech. Anal., Volume 5 (1956), pp. 55-128 | MR | Zbl

[52] Villani, Cédric A review of mathematical topics in collisional kinetic theory, Handbook of mathematical fluid dynamics, Vol. I, North-Holland, Amsterdam, 2002, pp. 71-305 | DOI | Zbl

[53] Wennberg, Bernt The Povzner inequality and moments in the Boltzmann equation, Rend. Circ. Mat. Palermo (2) Suppl., Volume 45 (1996), pp. 673-681 Proceedings of the VIII Int. Conf. on Waves and Stability in Continuous Media, Part II (Palermo, 1995) | MR | Zbl

Cité par Sources :