Description of the ground state for a model of two-component rotating Bose–Einstein condensates.
Journées équations aux dérivées partielles (2018), Talk no. 9, 7 p.

In the joint work with Amandine Aftalion [3], we describe the ground states of a rotating two-component Bose–Einstein condensate in two dimensions. In the regime we consider, both a one-dimensional interface between the two components, and zero-dimensional interfaces (vortices) are present and contribute to the energy. The difficulty is that the two contributions are not of the same order, and to show that they somehow decouple requires a precise localisation of the line energy.

Published online:
DOI: 10.5802/jedp.669
Sandier, Etienne 1

1 Université Paris-Est Créteil France
@article{JEDP_2018____A9_0,
     author = {Sandier, Etienne},
     title = {Description of the ground state for a model of two-component rotating {Bose{\textendash}Einstein} condensates.},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:9},
     pages = {1--7},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2018},
     doi = {10.5802/jedp.669},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.669/}
}
TY  - JOUR
AU  - Sandier, Etienne
TI  - Description of the ground state for a model of two-component rotating Bose–Einstein condensates.
JO  - Journées équations aux dérivées partielles
N1  - talk:9
PY  - 2018
SP  - 1
EP  - 7
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.669/
DO  - 10.5802/jedp.669
LA  - en
ID  - JEDP_2018____A9_0
ER  - 
%0 Journal Article
%A Sandier, Etienne
%T Description of the ground state for a model of two-component rotating Bose–Einstein condensates.
%J Journées équations aux dérivées partielles
%Z talk:9
%D 2018
%P 1-7
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.669/
%R 10.5802/jedp.669
%G en
%F JEDP_2018____A9_0
Sandier, Etienne. Description of the ground state for a model of two-component rotating Bose–Einstein condensates.. Journées équations aux dérivées partielles (2018), Talk no. 9, 7 p. doi : 10.5802/jedp.669. http://www.numdam.org/articles/10.5802/jedp.669/

[1] Aftalion, Amandine Vortices in Bose–Einstein Condensates, Progress in Nonlinear Differential Equations and their Applications, 67, Birkhäuser, 2006 | Zbl

[2] Aftalion, Amandine A minimal interface problem arising from a two component Bose–Einstein condensate via Gamma-convergence, Calc. Var. Partial Differ. Equ., Volume 52 (2015) no. 1-2, pp. 165-197 | Zbl

[3] Aftalion, Amandine; Sandier, Etienne Vortex patterns and vortex sheets in segragated two-component Bose–Einstein condensates (2019) (https://arxiv.org/abs/1901.08307)

[4] Alikakos, Nicholas D.; Faliagas, A. C. Stability Criteria for Multiphase Partitioning Problems with Volume Constraints (2015) (https://arxiv.org/abs/1509.08860)

[5] Goldman, Michael Sharp interface limit for two components Bose–Einstein condensates (2014) (https://arxiv.org/abs/1401.1727)

[6] Goldman, Michael; Merlet, Benoït Phase segregation for binary mixtures of Bose–Einstein Condensates (2015) (https://arxiv.org/abs/1505.07234)

[7] Ignat, Radu; Millot, Vincent The critical velocity for vortex existence in a two-dimensional rotating Bose–Einstein condensate, J. Funct. Anal., Volume 233 (2006) no. 1, pp. 260-306 | Zbl

[8] Ignat, Radu; Millot, Vincent Energy expansion and vortex location for a two-dimensional rotating Bose–Einstein condensate, Rev. Math. Phys., Volume 18 (2006) no. 2, pp. 119-162 | Zbl

[9] Jerrard, Robert L.; Soner, Halil M. The Jacobian and the Ginzburg–Landau energy, Calc. Var. Partial Differ. Equ., Volume 14 (2002) no. 2, pp. 151-191 | Zbl

[10] Jerrard, Robert L.; Soner, Halil M. Limiting behavior of the Ginzburg–Landau functional, J. Funct. Anal., Volume 192 (2002) no. 2, pp. 524-561 | Zbl

[11] Leoni, Giovanni; Murray, Ryan Second-Order Γ-limit for the Cahn-Hilliard Functional (2015) (https://arxiv.org/abs/1503.07272)

[12] Modica, Luciano; Mortola, Salvatore Il limite nella Γ-convergenza di una famiglia di funzionali ellittici, Boll. Un. Mat. Ital. A, Volume 14 (1977) no. 3, pp. 526-529

[13] Sandier, Etienne; Serfaty, Sylvia Vortices in the magnetic Ginzburg–Landau model, Progress in Nonlinear Differential Equations and their Applications, 70, Birkhäuser, 2008 | Zbl

[14] Serfaty, Sylvia On a model of rotating superfluids, ESAIM, Control Optim. Calc. Var., Volume 6 (2001), pp. 201-238 | Zbl

[15] Sternberg, Peter The effect of a singular perturbation on nonconvex variational problems, Arch. Ration. Mech. Anal., Volume 101 (1988) no. 3, pp. 209-260 | Zbl

Cited by Sources: