We describe a new approach to understanding averages of high energy Laplace eigenfunctions, , over submanifolds,
where is a submanifold and the induced by the Riemannian metric on . This approach can be applied uniformly to submanifolds of codimension and in particular, gives a new approach to understanding . The method, developed in [4, 5, 6, 7, 12, 13], relies on estimating averages by the behavior of microlocally near the conormal bundle to . By doing this, we are able to obtain quantitative improvements on eigenfunction averages under certain uniform non-recurrent conditions on the conormal directions to . In particular, we do not require any global assumptions on the manifold .
@article{JEDP_2018____A3_0, author = {Galkowski, Jeffrey}, title = {A microlocal approach to eigenfunction concentration}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:3}, pages = {1--14}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2018}, doi = {10.5802/jedp.663}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.663/} }
TY - JOUR AU - Galkowski, Jeffrey TI - A microlocal approach to eigenfunction concentration JO - Journées équations aux dérivées partielles N1 - talk:3 PY - 2018 SP - 1 EP - 14 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.663/ DO - 10.5802/jedp.663 LA - en ID - JEDP_2018____A3_0 ER -
%0 Journal Article %A Galkowski, Jeffrey %T A microlocal approach to eigenfunction concentration %J Journées équations aux dérivées partielles %Z talk:3 %D 2018 %P 1-14 %I Groupement de recherche 2434 du CNRS %U http://www.numdam.org/articles/10.5802/jedp.663/ %R 10.5802/jedp.663 %G en %F JEDP_2018____A3_0
Galkowski, Jeffrey. A microlocal approach to eigenfunction concentration. Journées équations aux dérivées partielles (2018), Talk no. 3, 14 p. doi : 10.5802/jedp.663. http://www.numdam.org/articles/10.5802/jedp.663/
[1] Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten, Math. Z., Volume 65 (1956), pp. 327-344 | DOI | MR
[2] On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z., Volume 155 (1977) no. 3, pp. 249-276 | DOI | MR
[3] A lower bound for the function on manifolds without conjugate points (2016) (https://arxiv.org/abs/1603.05697)
[4] On the growth of eigenfunction averages: microlocalization and geometry (2017) (https://arxiv.org/abs/1710.07972, to appear in Duke Math. J.)
[5] Eigenfunction concentration via geodesic beams (2019) (https://arxiv.org/abs/1903.08461)
[6] Improvements for eigenfunction averages: An application of geodesic beams (2019) (https://arxiv.org/abs/1809.06296)
[7] Averages of eigenfunctions over hypersurfaces, Commun. Math. Phys., Volume 360 (2018) no. 2, pp. 619-637 | Zbl
[8] On integrals of eigenfunctions over geodesics, Proc. Am. Math. Soc., Volume 143 (2015) no. 1, pp. 151-161 | DOI | MR
[9] Microlocal limits of plane waves and Eisenstein functions, Ann. Sci. Éc. Norm. Supér., Volume 47 (2014) no. 2, pp. 371-448 | DOI | MR
[10] Mathematical theory of scattering resonances (2016) (Book in progress, http://math.mit.edu/dyatlov/res/)
[11] When is a geodesic flow of ANOSOV type? I, J. Differ. Geom., Volume 8 (1973), pp. 437-463
[12] Defect measures of eigenfunctions with maximal growth (2017) (https://arxiv.org/abs/1704.01452 to appear in Ann. Inst. Fourier)
[13] Eigenfunction scarring and improvements in bounds, Anal. PDE, Volume 11 (2017) no. 3, pp. 801-812
[14] Local analysis of Selberg’s trace formula, Lecture Notes in Mathematics, 1040, Springer, 1983, i+128 pages | DOI | MR
[15] Sur certaines séries de Dirichlet associées aux géodésiques fermées d’une surface de Riemann compacte, C. R. Math. Acad. Sci. Paris, Volume 294 (1982) no. 8, pp. 273-276 | MR
[16] The spectral function of an elliptic operator, Acta Math., Volume 121 (1968), pp. 193-218 | DOI | MR
[17] norms of eigenfunctions of arithmetic surfaces, Ann. Math., Volume 141 (1995) no. 2, pp. 301-320 | DOI | MR | Zbl
[18] Riemannian manifolds: an introduction to curvature, Graduate Texts in Mathematics, 176, Springer, 2006 | Zbl
[19] On the asymptotic behavior of the spectral function of a self-adjoint differential equation of the second order, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 16 (1952), pp. 325-352 | MR
[20] About the blowup of quasimodes on Riemannian manifolds, J. Geom. Anal., Volume 21 (2011) no. 1, pp. 150-173 | DOI | MR
[21] Geodesic period integrals of eigenfunctions on Riemann surfaces and the Gauss–Bonnet Theorem (2016) (https://arxiv.org/abs/1604.03189)
[22] Riemannian manifolds with maximal eigenfunction growth, Duke Math. J., Volume 114 (2002) no. 3, pp. 387-437 | DOI | MR
[23] Focal points and sup-norms of eigenfunctions, Rev. Mat. Iberoam., Volume 32 (2016) no. 3, pp. 971-994 | DOI | MR | Zbl
[24] Focal points and sup-norms of eigenfunctions II: the two-dimensional case, Rev. Mat. Iberoam., Volume 32 (2016) no. 3, pp. 995-999 | DOI | MR | Zbl
[25] Explicit bounds on integrals of eigenfunctions over curves in surfaces of nonpositive curvature (2017) (https://arxiv.org/abs/1705.01688)
[26] Looping directions and integrals of eigenfunctions over submanifolds (2017) (https://arxiv.org/abs/1706.06717)
[27] Period integrals in non-positively curved manifolds (2018) (https://arxiv.org/abs/1806.01424)
[28] Kuznecov sum formulae and Szegő limit formulae on manifolds, Commun. Partial Differ. Equations, Volume 17 (1992) no. 1-2, pp. 221-260 | DOI | MR | Zbl
[29] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012, xii+431 pages | DOI | MR
Cited by Sources: