A Liouville type theorem is proven for the steady-state Navier-Stokes equations. It follows from the corresponding theorem on the Stokes equations with the drift. The drift is supposed to belong to a certain Morrey space.
@article{JEDP_2016____A9_0, author = {Seregin, Gregory}, title = {A {Liouville} type theorem for steady-state {Navier-Stokes} equations}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:9}, pages = {1--5}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2016}, doi = {10.5802/jedp.650}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.650/} }
TY - JOUR AU - Seregin, Gregory TI - A Liouville type theorem for steady-state Navier-Stokes equations JO - Journées équations aux dérivées partielles N1 - talk:9 PY - 2016 SP - 1 EP - 5 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.650/ DO - 10.5802/jedp.650 LA - en ID - JEDP_2016____A9_0 ER -
%0 Journal Article %A Seregin, Gregory %T A Liouville type theorem for steady-state Navier-Stokes equations %J Journées équations aux dérivées partielles %Z talk:9 %D 2016 %P 1-5 %I Groupement de recherche 2434 du CNRS %U http://www.numdam.org/articles/10.5802/jedp.650/ %R 10.5802/jedp.650 %G en %F JEDP_2016____A9_0
Seregin, Gregory. A Liouville type theorem for steady-state Navier-Stokes equations. Journées équations aux dérivées partielles (2016), Talk no. 9, 5 p. doi : 10.5802/jedp.650. http://www.numdam.org/articles/10.5802/jedp.650/
[1] Chae, D., Liouville-Type Theorem for the Forced Euler Equations and the Navier-Stokes Equations, Comm. Math. Phys. 326 (2014): 37-48.
[2] Chae, D., Yoneda, T., On the Liouville theorem for the stationary Navier-Stokes equations in a critical space, J. Math. Anal. Appl. 405 (2013), no. 2: 706-710.
[3] Chae, G., Wolf, J., On Liouville type theorems for the steady Navier-Stokes equations in , arXiv:1604.07643.
[4] Galdi, G. P., An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems. Second edition. Springer Monographs in Mathematics. Springer, New York, 2011.
[5] Giaquinta, M., Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983.
[6] Gilbarg, D., Weinberger, H. F., Asymptotic properties of steady plane solutions of the Navier-Stokes equations with bounded Dirichlet integral, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4) 5 (1978), no. 2: 381-404.
[7] Koch, G., Nadirashvili, N., Seregin, G., Sverak, V., Liouville theorems for the Navier-Stokes equations and applications, Acta Math. 203 (2009): 83–105.
[8] Nazarov, A. I. and Uraltseva, N. N., The Harnack inequality and related properties for solutions to elliptic and parabolic equations with divergence-free lower-order coefficients, St. Petersburg Mathematical Journal 23 (1): 93–115, 2012.
[9] Seregin, G., Liouville type theorem for stationary Navier-Stokes equations, Nonlinearity, 29 (2016): 2191–2195.
[10] Stein, E. M. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970.
Cited by Sources: