Microlocalization of resonant states and estimates of the residue of the scattering amplitude
Journées équations aux dérivées partielles (2003), article no. 2, 12 p.

We obtain some microlocal estimates of the resonant states associated to a resonance z 0 of an h-differential operator. More precisely, we show that the normalized resonant states are 𝒪(| Im z 0 |/h +h ) outside the set of trapped trajectories and are 𝒪(h ) in the incoming area of the phase space. As an application, we show that the residue of the scattering amplitude of a Schrödinger operator is small in some directions under an estimate of the norm of the spectral projector. Finally we prove such bound in some examples.

@article{JEDP_2003____A2_0,
     author = {Bony, Jean-Fran\c{c}ois and Michel, Laurent},
     title = {Microlocalization of resonant states and estimates of the residue of the scattering amplitude},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {2},
     publisher = {Universit\'e de Nantes},
     year = {2003},
     doi = {10.5802/jedp.616},
     zbl = {02079437},
     mrnumber = {2050588},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.616/}
}
Bony, Jean-François; Michel, Laurent. Microlocalization of resonant states and estimates of the residue of the scattering amplitude. Journées équations aux dérivées partielles (2003), article  no. 2, 12 p. doi : 10.5802/jedp.616. http://www.numdam.org/articles/10.5802/jedp.616/

[20] R. Abraham and J. E. Marsden, Foundations of mechanics, Second edition, Advanced Book Program, Benjamin/Cummings Publishing, 1978. | MR 515141 | Zbl 0393.70001

[21] N. Burq, Lower bounds for shape resonances widths of long range Schrödinger operators, Amer. J. Math. 124 (2002), no. 4, 677-735. | MR 1914456 | Zbl 1013.35019

[22] M. Dimassi and J. Sjöstrand, Spectral asymptotics in the semi-classical limit, Cambridge University Press, Cambridge, 1999. | MR 1735654 | Zbl 0926.35002

[23] S. Fujiié and T. Ramond, Matrice de scattering et résonances associées à une orbite hétérocline, Ann. Inst. H. Poincaré Phys. Théor. 69 (1998), no. 1, 31-82. | Numdam | MR 1635811 | Zbl 0916.34071

[24] S. Fujiié and T. Ramond, Breit-Wigner formula at barrier tops, preprint (2002). | MR 1972758

[25] C. Gérard and A. Martinez, Prolongement méromorphe de la matrice de scattering pour des problèmes à deux corps à longue portée, Ann. Inst. H. Poincaré Phys. Théor. 51 (1989), no. 1, 81-110. | Numdam | MR 1029851 | Zbl 0711.35097

[26] C. Gérard and J. Sjöstrand, Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm. Math. Phys. 108 (1987), no. 3, 391-421. | MR 874901 | Zbl 0637.35027

[27] B. Helffer and J. Sjöstrand, Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.) (1986), no. 24-25. | Numdam | MR 871788 | Zbl 0631.35075

[28] H. Isozaki and H. Kitada, Scattering matrices for two-body Schrödinger operators, Sci. Papers College Arts Sci. Univ Tokyo 35 (1985), no. 1, 81-107. | MR 847881 | Zbl 0615.35065

[29] N. Kaidi and P. Kerdelhué, Forme normale de Birkhoff et résonances, Asymptot. Anal. 23 (2000), no. 1, 1-21. | MR 1764337 | Zbl 0955.35009

[30] A. Lahmar-Benbernou, Estimation des résidus de la matrice de diffusion associés à des résonances de forme. I, Ann. Inst. H. Poincaré Phys. Théor. 71 (1999), no. 3, 303-338. | Numdam | MR 1714347 | Zbl 0944.35060

[31] A. Lahmar-Benbernou and A. Martinez, Semiclassical asymptotics of the residues of the scattering matrix for shape resonances, Asymptot. Anal. 20 (1999), no. 1, 13-38. | MR 1697827 | Zbl 0931.35119

[32] A. Martinez, An introduction to semiclassical and microlocal analysis, Springer-Verlag, New York, 2002. | MR 1872698 | Zbl 0994.35003

[33] L. Michel, Semi-classical behavior of the scattering amplitude for trapping perturbations at fixed energy, Can. J. Math., to appear. | MR 2074047 | Zbl 1084.35067

[34] L. Michel, Semi-classical estimate of the residue of the scattering amplitude for long-range potentials, J. Phys. A 36 (2003), 4375-4393. | MR 1984509 | Zbl 02072849

[35] V. Petkov and M. Zworski, Semi-classical estimates on the scattering determinant, Ann. Henri Poincaré 2 (2001), no. 4, 675-711. | MR 1852923 | Zbl 1041.81041

[36] J. Sjöstrand, Singularités analytiques microlocales, Astérisque, 95, Astérisque, vol. 95, Soc. Math. France, Paris, 1982, pp. 1-166. | MR 699623 | Zbl 0524.35007

[37] J. Sjöstrand, Semiclassical resonances generated by nondegenerate critical points, Pseudodifferential operators (Oberwolfach, 1986), Springer, Berlin, 1987, pp. 402-429. | MR 897789 | Zbl 0627.35074

[38] J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), no. 4, 729-769. | MR 1115789 | Zbl 0752.35046

[39] P. Stefanov, Estimates on the residue of the scattering amplitude, Asympt. Anal. 32 (2002), no. 3,4, 317-333. | MR 1993653 | Zbl 1060.35097

[40] P. Stefanov, Sharp upper bounds on the number of resonances near the real axis for trapped systems, Amer. J. Math., 125 (2003), no. 1, 183-224. | MR 1953522 | Zbl 1040.35055

[41] S-H. Tang and M. Zworski, From quasimodes to resonances, Math. Res. Lett. 5 (1998), no. 3, 261-272. | MR 1637824 | Zbl 0913.35101