Derivation of the Zakharov equations
Journées équations aux dérivées partielles (2005), article no. 16, 13 p.
DOI: 10.5802/jedp.27
Texier, Benjamin 1

1 Indiana University, Bloomington, IN 47405
@article{JEDP_2005____A16_0,
     author = {Texier, Benjamin},
     title = {Derivation of the {Zakharov} equations},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {16},
     pages = {1--13},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2005},
     doi = {10.5802/jedp.27},
     mrnumber = {2352783},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.27/}
}
TY  - JOUR
AU  - Texier, Benjamin
TI  - Derivation of the Zakharov equations
JO  - Journées équations aux dérivées partielles
PY  - 2005
SP  - 1
EP  - 13
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.27/
DO  - 10.5802/jedp.27
LA  - en
ID  - JEDP_2005____A16_0
ER  - 
%0 Journal Article
%A Texier, Benjamin
%T Derivation of the Zakharov equations
%J Journées équations aux dérivées partielles
%D 2005
%P 1-13
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.27/
%R 10.5802/jedp.27
%G en
%F JEDP_2005____A16_0
Texier, Benjamin. Derivation of the Zakharov equations. Journées équations aux dérivées partielles (2005), article  no. 16, 13 p. doi : 10.5802/jedp.27. http://www.numdam.org/articles/10.5802/jedp.27/

[1] C. Cheverry, O. Guès, G. Métivier, Oscillations fortes sur un champ linéairement dégénéré, Ann. E.N.S., vol. 36, no. 3 (2003.), 691–745 | Numdam | MR | Zbl

[2] T. Colin, G. Ebrard, G. Gallice, B. Texier, Justification of the Zakharov model from Klein-Gordon-waves systems, Comm. Partial Diff. Eq. 29 (2004), no. 9-10, 1365-1401. | MR | Zbl

[3] T. Colin, G. Métivier, in preparation.

[4] E. Grenier, Pseudo-differential estimates of singular perturbations, Comm. Pure and Applied Math., vol. 50 (1997), 821-865. | MR | Zbl

[5] J.-L. Joly, G. Métivier, J. Rauch, Transparent nonlinear geometric optics and Maxwell-Bloch equations, J. Diff. Eq., vol. 166 (2000), 175-250. | MR | Zbl

[6] D. Lannes, Sharp estimates for pseudo-differential operators with limited regularity and commutators, submitted.

[7] F. Linares, A. Ponce, J. C. Saut, On a degenerate Zakharov system, Bull. Braz. Math. Soc. 36 (2005), no. 1, 1-23. | Zbl

[8] G. Métivier, K. Zumbrun, Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems, Mem. Amer. Math. Soc., vol. 175, no. 826 (2005). | MR | Zbl

[9] T. Ozawa, Y. Tsutsumi, Existence and smoothing effect of solution for the Zakharov equation, Publ. Res. Inst. Math. Sci., vol. 28, no. 3 (1992), 329-361. | MR | Zbl

[10] S. Schochet, M. Weinstein, The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence, Comm. Math. Physics, vol. 106 (1986), 569-580. | MR | Zbl

[11] M. Taylor, Pseudodifferential operators and nonlinear PDE, Progress in Mathematics vol. 100, Birkhaüser Boston, 1991. | MR | Zbl

[12] B. Texier, WKB asymptotics for the Euler-Maxwell equations, Asymptotic Analysis 42 (2005), no. 3-4, 211-250. | MR | Zbl

[13] B. Texier, Derivation of the Zakharov equations, submitted.

[14] S. Musher, A. Rubenchik, V. Zakharov , Hamiltonian approach to the description of nonlinear plasma phenomena, Phys. Reports, vol. 129 (1985), 285-366. | MR

Cited by Sources: