Algebra, Algebraic geometry
Topological proofs of results on large fields
Comptes Rendus. Mathématique, Volume 360 (2022) no. G11, pp. 1187-1192.

We use the recently introduced étale open topology to prove several known facts on large fields. We show that these facts lift to a quite general topological setting.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.305
Walsberg, Erik 1

1 Department of Mathematics, University of California, Irvine, USA
@article{CRMATH_2022__360_G11_1187_0,
     author = {Walsberg, Erik},
     title = {Topological proofs of results on large fields},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1187--1192},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G11},
     year = {2022},
     doi = {10.5802/crmath.305},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.305/}
}
TY  - JOUR
AU  - Walsberg, Erik
TI  - Topological proofs of results on large fields
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1187
EP  - 1192
VL  - 360
IS  - G11
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.305/
DO  - 10.5802/crmath.305
LA  - en
ID  - CRMATH_2022__360_G11_1187_0
ER  - 
%0 Journal Article
%A Walsberg, Erik
%T Topological proofs of results on large fields
%J Comptes Rendus. Mathématique
%D 2022
%P 1187-1192
%V 360
%N G11
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.305/
%R 10.5802/crmath.305
%G en
%F CRMATH_2022__360_G11_1187_0
Walsberg, Erik. Topological proofs of results on large fields. Comptes Rendus. Mathématique, Volume 360 (2022) no. G11, pp. 1187-1192. doi : 10.5802/crmath.305. http://www.numdam.org/articles/10.5802/crmath.305/

[1] Bachmayr, Annette; Harbater, David; Hartmann, Julia; Pop, Florian Large fields in differential Galois theory, J. Inst. Math. Jussieu, Volume 20 (2021) no. 6, pp. 1931-1946 | DOI | MR | Zbl

[2] Bary-Soroker, Lior; Fehm, Arno Open problems in the theory of ample fields, Geometric and differential Galois theory (Séminaires et Congrès), Volume 27, Société Mathématique de France, 2013, pp. 1-11 | MR

[3] Fehm, Arno Subfields of ample fields. Rational maps and definability, J. Algebra, Volume 323 (2010) no. 6, pp. 1738-1744 | DOI | MR | Zbl

[4] Fehm, Arno Embeddings of function fields into ample fields, Manuscr. Math., Volume 134 (2011) no. 3-4, pp. 533-544 | DOI | MR | Zbl

[5] Harbater, David On function fields with free absolute Galois groups, J. Reine Angew. Math., Volume 632 (2009), pp. 85-103 | DOI | MR | Zbl

[6] Harbater, David; Stevenson, Katherine F. Local Galois theory in dimension two, Adv. Math., Volume 198 (2005) no. 2, pp. 623-653 | DOI | MR | Zbl

[7] Johnson, Will; Tran, Minh; Walsberg, Erik; Ye, Jinhe Étale open topology and the stable field conjecture (2021) (https://arxiv.org/abs/2009.02319)

[8] Pop, Florian Embedding problems over large fields, Ann. Math., Volume 144 (1996) no. 1, pp. 1-34 | DOI | MR | Zbl

[9] Pop, Florian Little survey on large fields - old & new, Valuation Theory in Interaction. Proceedings of the 2nd international conference and workshop on valuation theory (EMS Series of Congress Reports), European Mathematical Society, 2014, pp. 432-463 | DOI | Zbl

[10] Srinivasan, Padmavathi A virtually ample field that is not ample, Isr. J. Math., Volume 234 (2019) no. 2, pp. 769-776 | DOI | MR | Zbl

Cited by Sources: