Functional analysis
Sparse Brudnyi and John–Nirenberg Spaces
Comptes Rendus. Mathématique, Volume 359 (2021) no. 8, pp. 1059-1069.

A generalization of the theory of Y. Brudnyi [7], and A. and Y. Brudnyi [5, 6], is presented. Our construction connects Brudnyi’s theory, which relies on local polynomial approximation, with new results on sparse domination. In particular, we find an analogue of the maximal theorem for the fractional maximal function, solving a problem proposed by Kruglyak–Kuznetsov. Our spaces shed light on the structure of the John–Nirenberg spaces. We show that SJN p (sparse John–Nirenberg space) coincides with L p ,1<p<. This characterization yields the John–Nirenberg inequality by extrapolation and is useful in the theory of commutators.

Received:
Accepted:
Published online:
DOI: 10.5802/crmath.252
Classification: 42B35, 42B25, 46E30, 46E35
Domínguez, Óscar 1; Milman, Mario 2

1 O. Domínguez, Departamento de Análisis Matemático y Matemática Aplicada, Facultad de Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, Spain.
2 M. Milman, Instituto Argentino de Matematica, Buenos Aires, Argentina
@article{CRMATH_2021__359_8_1059_0,
     author = {Dom{\'\i}nguez, \'Oscar and Milman, Mario},
     title = {Sparse {Brudnyi} and {John{\textendash}Nirenberg} {Spaces}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1059--1069},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {8},
     year = {2021},
     doi = {10.5802/crmath.252},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.252/}
}
TY  - JOUR
AU  - Domínguez, Óscar
AU  - Milman, Mario
TI  - Sparse Brudnyi and John–Nirenberg Spaces
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 1059
EP  - 1069
VL  - 359
IS  - 8
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.252/
DO  - 10.5802/crmath.252
LA  - en
ID  - CRMATH_2021__359_8_1059_0
ER  - 
%0 Journal Article
%A Domínguez, Óscar
%A Milman, Mario
%T Sparse Brudnyi and John–Nirenberg Spaces
%J Comptes Rendus. Mathématique
%D 2021
%P 1059-1069
%V 359
%N 8
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.252/
%R 10.5802/crmath.252
%G en
%F CRMATH_2021__359_8_1059_0
Domínguez, Óscar; Milman, Mario. Sparse Brudnyi and John–Nirenberg Spaces. Comptes Rendus. Mathématique, Volume 359 (2021) no. 8, pp. 1059-1069. doi : 10.5802/crmath.252. http://www.numdam.org/articles/10.5802/crmath.252/

[1] Airta, Emil; Hytönen, Tuomas; Li, Kangwei; Martikainen, Henri; Oikari, Tuomas Off-diagonal estimates for bi-commutators (2020) | arXiv

[2] Astashkin, Sergey; Milman, Mario Garsia–Rodemich spaces: Local maximal functions and interpolation, Stud. Math., Volume 255 (2020) no. 1, pp. 1-26 | DOI | MR | Zbl

[3] Bastero, Jesús; Milman, Mario; Ruiz, Francisco J. Commutators of the maximal and sharp functions, Proc. Am. Math. Soc., Volume 128 (2000), pp. 65-74 | MR | Zbl

[4] Bennett, Colin; DeVore, Ronald A.; Sharpley, Robert Weak-L and BMO, Ann. Math., Volume 113 (1981), pp. 601-611 | DOI | MR | Zbl

[5] Brudnyi, Alexander; Brudnyĭ, Yuri A. Multivariate bounded variation functions of Jordan–Wiener type, J. Approx. Theory, Volume 251 (2020), 105346, 70 pages | MR | Zbl

[6] Brudnyi, Alexander; Brudnyĭ, Yuri A. On the Banach structure of multivariate BV spaces, Diss. Math., Volume 548 (2020), pp. 1-52 | MR | Zbl

[7] Brudnyĭ, Yuri A. Spaces defined by means of local approximations, Tr. Mosk. Mat. O.-va, Volume 24 (1971), pp. 69-132 English transl. in Trans. Mosc.. Math. Soc. 24 (1971), p. 73-139 | Zbl

[8] Calderón, Alberto P.; Zygmund, Antoni On the existence of certain singular integrals, Acta Math., Volume 88 (1952), pp. 85-139 | DOI | MR | Zbl

[9] Campanato, Sergio Su un teorema di interpolazione di G. Stampacchia, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 20 (1966), pp. 649-652 | Numdam | MR | Zbl

[10] Coifman, Ronald R.; Rochberg, Richard; Weiss, Guido Factorization theorems for Hardy spaces in several variables, Ann. Math., Volume 103 (1976), pp. 611-635 | DOI | MR | Zbl

[11] Dafni, Galia; Hytönen, Tuomas; Korte, Riikka; Yue, Hong The space JN p : nontriviality and duality, J. Funct. Anal., Volume 275 (2018) no. 3, pp. 577-603 | DOI | Zbl

[12] Domínguez, Oscar; Milman, Mario (in preparation)

[13] Fefferman, Charles Characterization of bounded mean oscillation, Bull. Am. Math. Soc., Volume 77 (1970), pp. 587-588 | DOI | MR | Zbl

[14] Fefferman, Charles; Stein, Elias M. H p spaces of several variables, Acta Math., Volume 129 (1972), pp. 137-193 | DOI | Zbl

[15] Frazier, Michael; Jawerth, Björn A discrete transform and decompositions of distribution spaces, J. Funct. Anal., Volume 93 (1990) no. 1, pp. 34-170 | DOI | MR | Zbl

[16] Garsia, Adriano M. Martingale Inequalities: Seminar Notes on Recent Progress, Mathematics Lecture Notes Series, W. A. Benjamin, Inc., 1973 | Zbl

[17] Garsia, Adriano M.; Rodemich, Eugène Monotonicity of certain functionals under rearrangements, Ann. Inst. Fourier, Volume 24 (1974) no. 2, pp. 67-116 | DOI | MR | Zbl

[18] Hytönen, Tuomas The L p -to-L q boundedness of commutators with applications to the Jacobian operator (2021) | arXiv

[19] Janson, Svante Mean oscillation and commutators of singular integral operators, Ark. Mat., Volume 16 (1978), pp. 263-270 | DOI | MR | Zbl

[20] John, Fritz; Nirenberg, Louis On functions of bounded mean oscillation, Commun. Pure Appl. Math., Volume 14 (1961), pp. 415-426 | DOI | MR | Zbl

[21] Kruglyak, Natan Smooth analogues of the Calderón–Zygmund decomposition, quantitative covering theorems and the K-functional for the couple (L q ,W ˙ p k ), Algebra Anal., Volume 8 (1996) no. 4, pp. 110-160 English transl. in St. Petersbg. Math. J. 8 (1997), no. 4, p. 617-649

[22] Kruglyak, Natan; Kuznetsov, Evgeny A. Sharp integral estimates for the fractional maximal function and interpolation, Ark. Mat., Volume 44 (2006) no. 2, pp. 309-326 | DOI | MR | Zbl

[23] Lerner, Andrei K. A simple proof of the A 2 conjecture, Int. Math. Res. Not., Volume 2013 (2013) no. 14, pp. 3159-3170 | DOI | MR | Zbl

[24] Lerner, Andrei K.; Nazarov, Fedor Intuitive dyadic calculus: the basics, Expo. Math., Volume 37 (2019) no. 3, pp. 225-265 | DOI | MR | Zbl

[25] Milman, Mario Marcinkiewicz spaces, Garsia–Rodemich spaces and the scale of John–Nirenberg self improving inequalities, Ann. Acad. Sci. Fenn., Math., Volume 41 (2016) no. 1, pp. 491-501 | DOI | MR | Zbl

[26] Moser, Jürgen A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Commun. Pure Appl. Math., Volume 13 (1960), pp. 457-468 | DOI | MR | Zbl

[27] Nehari, Zeev On bounded bilinear forms, Ann. Math., Volume 65 (1957), pp. 153-162 | DOI | MR | Zbl

[28] Peetre, Jaak New Thoughts on Besov Spaces, Duke University Mathematics Series, Duke University, 1976 | Zbl

[29] Riesz, Frigyes Untersuchungen über systeme integrierbarer funktionen, Math. Ann., Volume 69 (1910), pp. 449-497 | DOI | Zbl

[30] Stampacchia, Guido (p,λ) -spaces and interpolation, Commun. Pure Appl. Math., Volume 17 (1964), pp. 293-306 | DOI

[31] tampacchia, Guido The spaces L (p,λ) ,N (p,λ) and interpolation, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 19 (1965), pp. 443-462

[32] Triebel, Hans Theory of Function Spaces II, Monographs in Mathematics, 84, Birkhäuser, 1992 | MR | Zbl

[33] Varopoulos, Nicholas T. Hardy–Littlewood theory for semigroups, J. Funct. Anal., Volume 63 (1985), pp. 240-260 | DOI | MR | Zbl

Cited by Sources: