Geometry and Topology
The K-theory of the conjugation action
Comptes Rendus. Mathématique, Volume 359 (2021) no. 7, pp. 795-796.

In 1999, Brylinski and Zhang computed the complex equivariant K-theory of the conjugation self-action of a compact, connected Lie group with torsion-free fundamental group. In this note we show it is possible to do so in under a page.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.235
Carlson, Jeffrey D. 1

1 Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK
@article{CRMATH_2021__359_7_795_0,
     author = {Carlson, Jeffrey D.},
     title = {The {K-theory} of the conjugation action},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {795--796},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {7},
     year = {2021},
     doi = {10.5802/crmath.235},
     zbl = {07390661},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.235/}
}
TY  - JOUR
AU  - Carlson, Jeffrey D.
TI  - The K-theory of the conjugation action
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 795
EP  - 796
VL  - 359
IS  - 7
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.235/
DO  - 10.5802/crmath.235
LA  - en
ID  - CRMATH_2021__359_7_795_0
ER  - 
%0 Journal Article
%A Carlson, Jeffrey D.
%T The K-theory of the conjugation action
%J Comptes Rendus. Mathématique
%D 2021
%P 795-796
%V 359
%N 7
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.235/
%R 10.5802/crmath.235
%G en
%F CRMATH_2021__359_7_795_0
Carlson, Jeffrey D. The K-theory of the conjugation action. Comptes Rendus. Mathématique, Volume 359 (2021) no. 7, pp. 795-796. doi : 10.5802/crmath.235. http://www.numdam.org/articles/10.5802/crmath.235/

[1] Atiyah, Michael F. On the K-theory of compact Lie groups, Topology, Volume 4 (1965) no. 1, pp. 95-99 | DOI | MR | Zbl

[2] Brylinski, Jean-Luc; Zhang, Bin Equivariant K-theory of compact connected Lie groups, K-Theory, Volume 20 (2000) no. 1, pp. 23-36 | DOI | MR | Zbl

[3] Fok, Chi-Kwong The Real K-theory of compact Lie groups, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 10 (2014), 022, 26 pages | DOI | MR | Zbl

[4] Hodgkin, Luke On the K-theory of Lie groups, Topology, Volume 6 (1967) no. 1, pp. 1-36 | DOI | MR

[5] Hodgkin, Luke The equivariant Künneth theorem in K-theory, Topics in K-theory (Lecture Notes in Mathematics), Volume 496, Springer, 1975, pp. 1-101 | DOI | MR

Cited by Sources: