Partial differential equations
On the existence of ground states of an equation of Schrödinger–Poisson–Slater type
Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 219-227.

We study the existence of ground states of a Schrödinger–Poisson–Slater type equation with pure power nonlinearity. By carrying out the constrained minimization on a special manifold, which is a combination of the Pohozaev manifold and Nehari manifold, we obtain the existence of ground state solutions of this system.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.175
Classification: 35J20, 35A23, 35Q55, 35J61
Keywords: Schrödinger–Poisson–Slater type equation, ground state, Coulomb–Sobolev inequality
Lei, Chunyu 1; Lei, Yutian 2

1 Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
2 Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
@article{CRMATH_2021__359_2_219_0,
     author = {Lei, Chunyu and Lei, Yutian},
     title = {On the existence of ground states of an equation of {Schr\"odinger{\textendash}Poisson{\textendash}Slater} type},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {219--227},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {2},
     year = {2021},
     doi = {10.5802/crmath.175},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.175/}
}
TY  - JOUR
AU  - Lei, Chunyu
AU  - Lei, Yutian
TI  - On the existence of ground states of an equation of Schrödinger–Poisson–Slater type
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 219
EP  - 227
VL  - 359
IS  - 2
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.175/
DO  - 10.5802/crmath.175
LA  - en
ID  - CRMATH_2021__359_2_219_0
ER  - 
%0 Journal Article
%A Lei, Chunyu
%A Lei, Yutian
%T On the existence of ground states of an equation of Schrödinger–Poisson–Slater type
%J Comptes Rendus. Mathématique
%D 2021
%P 219-227
%V 359
%N 2
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.175/
%R 10.5802/crmath.175
%G en
%F CRMATH_2021__359_2_219_0
Lei, Chunyu; Lei, Yutian. On the existence of ground states of an equation of Schrödinger–Poisson–Slater type. Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 219-227. doi : 10.5802/crmath.175. http://www.numdam.org/articles/10.5802/crmath.175/

[1] Ambrosetti, Antonio; Ruiz, David Multiple bounded states for Schrödinger–Poisson problem, Commun. Contemp. Math., Volume 10 (2008) no. 3, pp. 391-404 | DOI | Zbl

[2] Bellazzini, Jacopo; Frank, Rupert L.; Visciglia, Nicola Maximizers for Gagliardo–Nirenberg inequalities and related non-local problems, Math. Ann., Volume 360 (2014) no. 3-4, pp. 653-673 | DOI | MR | Zbl

[3] Bellazzini, Jacopo; Ghimenti, Marco; Mercuri, Carlo; Moroz, Vitaly; Van Schaftingen, Jean Sharp Gagliardo–Nirenberg inequalities in fractional Coulomb–Sobolev spaces, Trans. Am. Math. Soc., Volume 370 (2018) no. 11, pp. 8285-8310 | DOI | MR | Zbl

[4] D’Aprile, Teresa; Wei, Juncheng On bound states concentrating on spheres for the Maxwell–Schrödinger equation, SIAM J. Math. Anal., Volume 37 (2005) no. 1, pp. 321-342 | DOI | Zbl

[5] Georgiev, Vladimir; Prinari, Francesca; Visciglia, Nicola On the radiality of constrained minimizers to the Schrödinger–Poisson–Slater energy, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 29 (2012) no. 3, pp. 369-376 | DOI | Numdam | Zbl

[6] Ianni, Isabella; Ruiz, David Ground and bound states for a static Schrödinger–Poisson–Slater problem, Commun. Contemp. Math., Volume 14 (2012) no. 1, 1250003, 22 pages | Zbl

[7] Lei, Yutian Qualitative analysis for the static Hartree-type equations, SIAM J. Math. Anal., Volume 45 (2013) no. 1, pp. 388-406 | MR | Zbl

[8] Liu, Zhisu; Zhang, Zhitao; Huang, Shuibo Existence and nonexistence of positive solutions for a static Schrödinger–Poisson–Slater equation, J. Differ. Equations, Volume 266 (2019) no. 9, pp. 5912-5941 | Zbl

[9] Ruiz, David The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., Volume 237 (2006) no. 2, pp. 655-674 | DOI | MR | Zbl

[10] Ruiz, David On the Schrödinger–Poisson–Slater system: behavior of minimizers, radial and nonradial cases, Arch. Ration. Mech. Anal., Volume 198 (2010) no. 1, pp. 349-368 | DOI | MR | Zbl

[11] Ruiz, David; Vaira, Giusi Cluster solutions for the Schrödinger–Poisson–Slater problem around a local minimun of potential, Rev. Mat. Iberoam., Volume 27 (2011) no. 1, pp. 253-271 | DOI | Zbl

[12] Tang, Xianhua; Chen, Sitong Ground state solutions of Nehari–Pohozaev type for Schrödinger–Poisson problems with general potentials, Discrete Contin. Dyn. Syst., Volume 37 (2017) no. 9, pp. 4973-5002 | DOI | Zbl

[13] Willem, Michel Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser, 1996 | MR | Zbl

Cited by Sources: