Analysis
Sharp rigidity estimates for incompatible fields as a consequence of the Bourgain Brezis div-curl result
Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 155-160.

In this note we show that a sharp rigidity estimate and a sharp Korn’s inequality for matrix-valued fields whose incompatibility is a bounded measure can be obtained as a consequence of a Hodge decomposition with critical integrability due to Bourgain and Brezis.

Dans cette note, nous démontrons qu’une estimée de rigidité et une inégalité de Korn pour des champs avec des valeurs matricielles dont l’incompatibilité est une mesure bornée peuvent être obtenues comme conséquence d’une décomposition de Hodge avec intégrabilité critique dû à Bourgain et Brezis.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.161
Classification: 49Q20, 74C15, 53C24
Keywords: rigidity estimates, div-curl systems, Korn inequality, plasticity, incompatible fields, Hodge decomposition
Mot clés : estimée de rigidité, systèmes div-rot, inégalité de Korn, plasticité, champs incompatibles, décomposition de Hodge
Conti, Sergio 1; Garroni, Adriana 2

1 Institute for Applied Mathematics, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany
2 University of Rome, Sapienza, P.le A. Moro 2, 00185 Rome, Italy
@article{CRMATH_2021__359_2_155_0,
     author = {Conti, Sergio and Garroni, Adriana},
     title = {Sharp rigidity estimates for incompatible fields as a consequence of the {Bourgain} {Brezis} div-curl result},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {155--160},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {2},
     year = {2021},
     doi = {10.5802/crmath.161},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.161/}
}
TY  - JOUR
AU  - Conti, Sergio
AU  - Garroni, Adriana
TI  - Sharp rigidity estimates for incompatible fields as a consequence of the Bourgain Brezis div-curl result
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 155
EP  - 160
VL  - 359
IS  - 2
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.161/
DO  - 10.5802/crmath.161
LA  - en
ID  - CRMATH_2021__359_2_155_0
ER  - 
%0 Journal Article
%A Conti, Sergio
%A Garroni, Adriana
%T Sharp rigidity estimates for incompatible fields as a consequence of the Bourgain Brezis div-curl result
%J Comptes Rendus. Mathématique
%D 2021
%P 155-160
%V 359
%N 2
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.161/
%R 10.5802/crmath.161
%G en
%F CRMATH_2021__359_2_155_0
Conti, Sergio; Garroni, Adriana. Sharp rigidity estimates for incompatible fields as a consequence of the Bourgain Brezis div-curl result. Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 155-160. doi : 10.5802/crmath.161. http://www.numdam.org/articles/10.5802/crmath.161/

[1] Bourgain, Jean; Brezis, Haïm New estimates for the Laplacian, the div-curl, and related Hodge systems, C. R. Math. Acad. Sci. Paris, Volume 338 (2004) no. 7, pp. 539-543 | DOI | MR | Zbl

[2] Bourgain, Jean; Brezis, Haïm New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc., Volume 9 (2007) no. 2, pp. 277-315 | DOI | MR | Zbl

[3] Brezis, Haïm; Van Schaftingen, Jean Boundary estimates for elliptic systems with L 1 data, Calc. Var. Partial Differ. Equ., Volume 30 (2007) no. 3, pp. 369-388 | DOI | MR | Zbl

[4] Chambolle, Antonin; Giacomini, Alessandro; Ponsiglione, Marcello Piecewise rigidity, J. Funct. Anal., Volume 244 (2007) no. 1, pp. 134-153 | DOI | MR | Zbl

[5] Conti, Sergio; Dolzmann, Georg; Müller, Stefan Korn’s second inequality and geometric rigidity with mixed growth conditions, Calc. Var. Partial Differ. Equ., Volume 50 (2014) no. 1-2, pp. 437-454 | DOI | MR | Zbl

[6] Conti, Sergio; Garroni, Adriana; Ortiz, Michael The line-tension approximation as the dilute limit of linear-elastic dislocations, Arch. Ration. Mech. Anal., Volume 218 (2015) no. 2, pp. 699-755 | DOI | MR | Zbl

[7] Evans, Lawrence C.; Gariepy, Ronald F. Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, 1992 | Zbl

[8] Friesecke, Gero; James, Richard D.; Müller, Stefan A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Commun. Pure Appl. Math., Volume 55 (2002) no. 11, pp. 1461-1506 | DOI | MR | Zbl

[9] Friesecke, Gero; Müller, Stefan; James, Richard D. Rigorous derivation of nonlinear plate theory and geometric rigidity, C. R. Math. Acad. Sci. Paris, Volume 334 (2002) no. 2, pp. 173-178 | DOI | MR | Zbl

[10] Garroni, Adriana; Leoni, Giovanni; Ponsiglione, Marcello Gradient theory for plasticity via homogenization of discrete dislocations, J. Eur. Math. Soc., Volume 12 (2010) no. 5, pp. 1231-1266 | DOI | MR | Zbl

[11] Gmeineder, Franz; Spector, Daniel On Korn–Maxwell–Sobolev Inequalities (2020) (https://arxiv.org/abs/2010.03353)

[12] Kufner, Alois Weighted Sobolev Spaces, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 31, BSB B. G. Teubner Verlagsgesellschaft, 1980 | MR | Zbl

[13] Lanzani, Loredana; Stein, Eli A note on div curl inequalities, Math. Res. Lett., Volume 12 (2005) no. 1, pp. 57-61 | DOI | MR | Zbl

[14] Lauteri, Gianluca; Luckhaus, Stephan Geometric rigidity estimates for incompatible fields in dimension 3 (2017) (https://arxiv.org/abs/1703.03288)

[15] Lewintan, Peter; Neff, Patrizio Nečas-Lions lemma reloaded: An L p -version of the generalized Korn inequality for incompatible tensor fields (2019) (https://arxiv.org/abs/1912.08447)

[16] Müller, Stefan; Scardia, Lucia; Zeppieri, Caterina Ida Geometric rigidity for incompatible fields and an application to strain-gradient plasticity, Indiana Univ. Math. J., Volume 63 (2014) no. 5, pp. 1365-1396 | MR | Zbl

[17] Stein, E. M. Singular Integrals and differentiability properties of functions, Princeton University Press, 1970 | Zbl

[18] Van Schaftingen, Jean Estimates for L 1 -vector fields, C. R. Math. Acad. Sci. Paris, Volume 339 (2004) no. 3, pp. 181-186 | DOI | MR | Zbl

Cited by Sources: