We define and compare, by model-theoretical methods, some exponentiations over the quantum algebra . We discuss two cases, according to whether the parameter is a root of unity. We show that the universal enveloping algebra of embeds in a non-principal ultraproduct of , where varies over the primitive roots of unity.
Revised:
Accepted:
Published online:
Mots-clés : Quantum algebra, quantum plane, exponential map, ultraproduct
@article{CML_2013__5_2_49_0, author = {L{\textquoteright}Innocente, Sonia and Point, Fran\c{c}oise and Toffalori, Carlo}, title = {Exponentiations over the quantum algebra $U_{q}(sl_2(\mathbb{C}))$}, journal = {Confluentes Mathematici}, pages = {49--77}, publisher = {Institut Camille Jordan}, volume = {5}, number = {2}, year = {2013}, doi = {10.5802/cml.8}, language = {en}, url = {http://www.numdam.org/articles/10.5802/cml.8/} }
TY - JOUR AU - L’Innocente, Sonia AU - Point, Françoise AU - Toffalori, Carlo TI - Exponentiations over the quantum algebra $U_{q}(sl_2(\mathbb{C}))$ JO - Confluentes Mathematici PY - 2013 SP - 49 EP - 77 VL - 5 IS - 2 PB - Institut Camille Jordan UR - http://www.numdam.org/articles/10.5802/cml.8/ DO - 10.5802/cml.8 LA - en ID - CML_2013__5_2_49_0 ER -
%0 Journal Article %A L’Innocente, Sonia %A Point, Françoise %A Toffalori, Carlo %T Exponentiations over the quantum algebra $U_{q}(sl_2(\mathbb{C}))$ %J Confluentes Mathematici %D 2013 %P 49-77 %V 5 %N 2 %I Institut Camille Jordan %U http://www.numdam.org/articles/10.5802/cml.8/ %R 10.5802/cml.8 %G en %F CML_2013__5_2_49_0
L’Innocente, Sonia; Point, Françoise; Toffalori, Carlo. Exponentiations over the quantum algebra $U_{q}(sl_2(\mathbb{C}))$. Confluentes Mathematici, Volume 5 (2013) no. 2, pp. 49-77. doi : 10.5802/cml.8. http://www.numdam.org/articles/10.5802/cml.8/
[1] C.C. Chang and H.J. Keisler. Model theory. North-Holland, 1973.
[2] K.R. Goodearl and R.B.Jr. Warfield. An Introduction to Noncommutative Rings. London Math. Soc. Student Texts 16, Cambridge University Press, 1989.
[3] I. Herzog and S. L’Innocente. The nonstandard quantum plane. Ann. Pure Applied Logic 156:78–85, 2008.
[4] E. Hrushovski and B. Zilber. Zariski geometries. J. Amer. Math. Soc. 9:1–56, 1996.
[5] N. Jacobson. Structure of Rings. Colloquium Publications 37, Amer. Math. Soc., 1964.
[6] J. Jantzen. Lectures on Quantum groups. Graduate Studies in Mathematics 9, Amer. Math. Soc., 1996.
[7] C. Kassel, Quantum groups. Graduate Texts in Mathematics 155, Springer, 1995.
[8] A. Klimyk and K. Schmüdgen. Quantum groups and their representations. Texts and Monographs in Physics, Springer, 1997.
[9] S. L’Innocente, A. Macintyre and F. Point. Exponentiations over the universal enveloping algebra of . Ann. Pure Applied Logic 161:1565–1580, 2010.
[10] A. Macintyre. Model theory of exponentials on Lie algebras. Math. Structures Comput. Sci. 18:189–204, 2008.
[11] M. Prest. Model theory and modules. London Math. Soc. Lecture Note Series 130, Cambridge University Press, 1987.
[12] W. Rossmann. Lie groups: An introduction through linear groups. Oxford University Press, 2002.
[13] B. Zilber. A class of quantum Zariski geometries. In Model Theory with applications to algebra and analysis, I (Z. Chatzidakis, H.D. Macpherson, A. Pillay, A.J. Wilkie editors), pages 293–326. London Math. Soc. Lecture Note Series 349, Cambridge University Press, 2008.
Cited by Sources: