Symmetric quantum Weyl algebras
Annales mathématiques Blaise Pascal, Volume 11 (2004) no. 2, pp. 187-203.

We study the symmetric powers of four algebras: q-oscillator algebra, q-Weyl algebra, h-Weyl algebra and U(𝔰𝔩 2 ). We provide explicit formulae as well as combinatorial interpretation for the normal coordinates of products of arbitrary elements in the above algebras.

DOI: 10.5802/ambp.192
Díaz, Rafael 1; Pariguan, Eddy 2

1 Instituto Venezolano de Inves- tigaciones Científicas Departamento de Matemáticas Altos de Pipe. Caracas 21827 Venezuela
2 Universidad Central de Venezue- la Departamento de Matemáticas Los Chaguaramos Caracas 1020 Venezuela
@article{AMBP_2004__11_2_187_0,
     author = {D{\'\i}az, Rafael and Pariguan, Eddy},
     title = {Symmetric quantum {Weyl} algebras},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {187--203},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {11},
     number = {2},
     year = {2004},
     doi = {10.5802/ambp.192},
     zbl = {02205936},
     mrnumber = {2109607},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.192/}
}
TY  - JOUR
AU  - Díaz, Rafael
AU  - Pariguan, Eddy
TI  - Symmetric quantum Weyl algebras
JO  - Annales mathématiques Blaise Pascal
PY  - 2004
SP  - 187
EP  - 203
VL  - 11
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.192/
DO  - 10.5802/ambp.192
LA  - en
ID  - AMBP_2004__11_2_187_0
ER  - 
%0 Journal Article
%A Díaz, Rafael
%A Pariguan, Eddy
%T Symmetric quantum Weyl algebras
%J Annales mathématiques Blaise Pascal
%D 2004
%P 187-203
%V 11
%N 2
%I Annales mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.192/
%R 10.5802/ambp.192
%G en
%F AMBP_2004__11_2_187_0
Díaz, Rafael; Pariguan, Eddy. Symmetric quantum Weyl algebras. Annales mathématiques Blaise Pascal, Volume 11 (2004) no. 2, pp. 187-203. doi : 10.5802/ambp.192. http://www.numdam.org/articles/10.5802/ambp.192/

[1] Alev, J.; Hodges, T.J.; Velez, J.D. Fixed rings of the Weyl algebra A 1 (), Journal of algebra, Volume 130 (1990), pp. 83-96 | DOI | MR | Zbl

[2] Kassel, Christian Quantum groups, Springer-Velarg, New York, 1995 | MR | Zbl

[3] Martinec, Emil; Moore, Gregory Noncommutative Solitons on Orbifolds (2001) (hep-th/0101199)

[4] Kontsevich, M. Deformation Quantization of Poisson Manifolds I (1997) (math. q-alg/97090401)

[5] Korogodski, Leonid; Soibelman., Yan Algebras of functions on Quantum groups. Part I, Mathematical surveys and monographs, Volume 56 (1996) | Zbl

[6] Etingof, Pavel; Ginzburg, Victor Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math, Volume 147 (2002) no. 2, pp. 243-348 | DOI | MR | Zbl

[7] Doubilet, Peter On the foundations of combinatorial theory. VII: Symmetric functions through the theory of distribution and occupancy, Gian-Carlo Rota on Combinatorics. Introductory papers and commentaries (1995), pp. 402-422

[8] Díaz, Rafael; Pariguan, Eddy Quantum symmetric functions (2003) (math.QA/0312494)

[9] Díaz, Rafael; Pariguan, Eddy Super, quantum and non-commutative species (2004) (Work in progress)

[10] Gopakumar, Rajesh; Minwalla, Shiraz; Strominger, Andrew Noncommutative Solitons, J. High Energy Phys. JHEP, Volume 05-020 (2000) | MR | Zbl

[11] Solomon, A.I. Phys.Lett. A 196, 1994 (Number 29, Volume 126)

[12] Kac, Victor Infinite dimensional Lie algebras., Cambridge University Press, New York, 1990 | MR | Zbl

[13] Kac, Victor; Cheung, Pokman Quantum Calculus, Springer-Velarg, New York, 2002 | MR | Zbl

Cited by Sources: