Four-Valent Oriented Graphs of Biquasiprimitive Type
Algebraic Combinatorics, Volume 4 (2021) no. 3, pp. 409-434.

Let 𝒪𝒢(4) denote the family of all graph-group pairs (Γ,G) where Γ is 4-valent, connected and G-oriented (G-half-arc-transitive). Using a novel application of the structure theorem for biquasiprimitive permutation groups of the second author, we produce a description of all pairs (Γ,G)𝒪𝒢(4) for which every nontrivial normal subgroup of G has at most two orbits on the vertices of Γ, and at least one normal subgroup has two orbits. In particular we show that G has a unique minimal normal subgroup N and that NT k for a simple group T and k{1,2,4,8}. This provides a crucial step towards a general description of the long-studied family 𝒪𝒢(4) in terms of a normal quotient reduction. We also give several methods for constructing pairs (Γ,G) of this type and provide many new infinite families of examples, covering each of the possible structures of the normal subgroup N.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.161
Classification: 05C25, 20B25, 05E18
Keywords: Edge-transitive graphs, automorphism groups, oriented graphs, graph quotients, vertex-transitive graphs, quasiprimitive permutation groups, Cayley graphs.
Poznanović, Nemanja 1; Praeger, Cheryl E. 2

1 School of Mathematics and Statistics University of Melbourne Parkville, VIC 3010, Australia
2 Department of Mathematics and Statistics University of Western Australia Perth, WA 6009, Australia
@article{ALCO_2021__4_3_409_0,
     author = {Poznanovi\'c, Nemanja and Praeger, Cheryl E.},
     title = {Four-Valent {Oriented} {Graphs} of {Biquasiprimitive} {Type}},
     journal = {Algebraic Combinatorics},
     pages = {409--434},
     publisher = {MathOA foundation},
     volume = {4},
     number = {3},
     year = {2021},
     doi = {10.5802/alco.161},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/alco.161/}
}
TY  - JOUR
AU  - Poznanović, Nemanja
AU  - Praeger, Cheryl E.
TI  - Four-Valent Oriented Graphs of Biquasiprimitive Type
JO  - Algebraic Combinatorics
PY  - 2021
SP  - 409
EP  - 434
VL  - 4
IS  - 3
PB  - MathOA foundation
UR  - http://www.numdam.org/articles/10.5802/alco.161/
DO  - 10.5802/alco.161
LA  - en
ID  - ALCO_2021__4_3_409_0
ER  - 
%0 Journal Article
%A Poznanović, Nemanja
%A Praeger, Cheryl E.
%T Four-Valent Oriented Graphs of Biquasiprimitive Type
%J Algebraic Combinatorics
%D 2021
%P 409-434
%V 4
%N 3
%I MathOA foundation
%U http://www.numdam.org/articles/10.5802/alco.161/
%R 10.5802/alco.161
%G en
%F ALCO_2021__4_3_409_0
Poznanović, Nemanja; Praeger, Cheryl E. Four-Valent Oriented Graphs of Biquasiprimitive Type. Algebraic Combinatorics, Volume 4 (2021) no. 3, pp. 409-434. doi : 10.5802/alco.161. http://www.numdam.org/articles/10.5802/alco.161/

[1] Al-bar, Jehan A.; Al-kenani, Ahmad N.; Muthana, Najat Mohammad; Praeger, Cheryl E. Finite edge-transitive oriented graphs of valency four with cyclic normal quotients, J. Algebraic Combin., Volume 46 (2017) no. 1, pp. 109-133 | DOI | MR | Zbl

[2] Al-bar, Jehan A.; Al-kenani, Ahmad N.; Muthana, Najat Mohammad; Praeger, Cheryl E. A normal quotient analysis for some families of oriented four-valent graphs, Ars Math. Contemp., Volume 12 (2017) no. 2, pp. 361-381 | DOI | MR | Zbl

[3] Al-bar, Jehan A.; Al-kenani, Ahmad N.; Muthana, Najat Mohammad; Praeger, Cheryl E.; Spiga, Pablo Finite edge-transitive oriented graphs of valency four: a global approach, Electron. J. Combin., Volume 23 (2016) no. 1, Paper 1.10 | DOI | MR | Zbl

[4] Bosma, Wieb; Cannon, John; Playoust, Catherine The Magma algebra system. I. The user language, J. Symbolic Comput., Volume 24 (1997) no. 3-4, pp. 235-265 Computational algebra and number theory (London, 1993) | DOI | MR | Zbl

[5] Conder, Marston; Zhou, Jin-Xin; Feng, Yan-Quan; Zhang, Mi-Mi Edge-transitive bi-Cayley graphs, J. Combin. Theory Ser. B, Volume 145 (2020), pp. 264-306 | DOI | MR | Zbl

[6] Coxeter, Harold S.; Moser, William O. J. Generators and relations for discrete groups, Springer Science & Business Media, 1957 | Zbl

[7] Godsil, Chris; Royle, Gordon Algebraic graph theory, Graduate Texts in Mathematics, 207, Springer-Verlag, New York, 2001, xx+439 pages | DOI | MR | Zbl

[8] Guralnick, Robert M. Subgroups of prime power index in a simple group, J. Algebra, Volume 81 (1983) no. 2, pp. 304-311 | DOI | MR | Zbl

[9] Huppert, Bertram Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967, xii+793 pages | MR | Zbl

[10] King, Carlisle S. H. Generation of finite simple groups by an involution and an element of prime order, J. Algebra, Volume 478 (2017), pp. 153-173 | DOI | MR | Zbl

[11] Marušič, Dragan Half-transitive group actions on finite graphs of valency 4, J. Combin. Theory Ser. B, Volume 73 (1998) no. 1, pp. 41-76 | DOI | MR | Zbl

[12] Marušič, Dragan Recent developments in half-transitive graphs, Discrete Math., Volume 182 (1998) no. 1-3, pp. 219-231 | DOI | MR | Zbl

[13] Marušič, Dragan; Nedela, Roman On the point stabilizers of transitive groups with non-self-paired suborbits of length 2, J. Group Theory, Volume 4 (2001) no. 1, pp. 19-43 | DOI | MR | Zbl

[14] Marušič, Dragan; Praeger, Cheryl E. Tetravalent graphs admitting half-transitive group actions: alternating cycles, J. Combin. Theory Ser. B, Volume 75 (1999) no. 2, pp. 188-205 | DOI | MR | Zbl

[15] Morris, Joy; Praeger, Cheryl E.; Spiga, Pablo Strongly regular edge-transitive graphs, Ars Math. Contemp., Volume 2 (2009) no. 2, pp. 137-155 | DOI | MR | Zbl

[16] Potočnik, Primož; Šparl, Primož On the radius and the attachment number of tetravalent half-arc-transitive graphs, Discrete Math., Volume 340 (2017) no. 12, pp. 2967-2971 | DOI | MR | Zbl

[17] Potočnik, Primož; Spiga, Pablo; Verret, Gabriel A census of 4-valent half-arc-transitive graphs and arc-transitive digraphs of valence two, Ars Math. Contemp., Volume 8 (2015) no. 1, pp. 133-148 | DOI | MR | Zbl

[18] Potočnik, Primož; Verret, Gabriel On the vertex-stabiliser in arc-transitive digraphs, J. Combin. Theory Ser. B, Volume 100 (2010) no. 6, pp. 497-509 | DOI | MR | Zbl

[19] Potočnik, Primož; Wilson, Steve The separated box product of two digraphs, European J. Combin., Volume 62 (2017), pp. 35-49 | DOI | MR | Zbl

[20] Poznanović, Nemanja; Praeger, Cheryl E. Biquasiprimitive oriented graphs of valency four, 2017 MATRIX annals (MATRIX Book Ser.), Volume 2, Springer, Cham, 2019, pp. 337-341 | DOI | MR | Zbl

[21] Praeger, Cheryl E. Imprimitive symmetric graphs, Ars Combin., Volume 19 (1985) no. A, pp. 149-163 | MR | Zbl

[22] Praeger, Cheryl E. An O’Nan–Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. London Math. Soc. (2), Volume 47 (1993) no. 2, pp. 227-239 | DOI | MR | Zbl

[23] Praeger, Cheryl E. Finite normal edge-transitive Cayley graphs, Bull. Austral. Math. Soc., Volume 60 (1999) no. 2, pp. 207-220 | DOI | MR | Zbl

[24] Praeger, Cheryl E. Finite transitive permutation groups and bipartite vertex-transitive graphs, Illinois J. Math., Volume 47 (2003) no. 1-2, pp. 461-475 | MR | Zbl

[25] Praeger, Cheryl E.; Schneider, Csaba Permutation groups and Cartesian decompositions, London Mathematical Society Lecture Note Series, 449, Cambridge University Press, Cambridge, 2018, xiii+323 pages | DOI | MR | Zbl

[26] Rivera, Alejandra Ramos; Šparl, Primož New structural results on tetravalent half-arc-transitive graphs, J. Combin. Theory Ser. B, Volume 135 (2019), pp. 256-278 | DOI | MR | Zbl

[27] Zhou, Jin-Xin; Feng, Yan-Quan The automorphisms of bi-Cayley graphs, J. Combin. Theory Ser. B, Volume 116 (2016), pp. 504-532 | DOI | MR | Zbl

Cited by Sources: