Quivers and moduli spaces of pointed curves of genus zero
Algebraic Combinatorics, Volume 4 (2021) no. 1, pp. 89-124.

We construct moduli spaces of representations of quivers over arbitrary schemes and show how moduli spaces of pointed curves of genus zero like the Grothendieck–Knudsen moduli spaces M ¯ 0,n and the Losev–Manin moduli spaces L ¯ n can be interpreted as inverse limits of moduli spaces of representations of certain bipartite quivers. We also investigate the case of more general Hassett moduli spaces M ¯ 0,a of weighted pointed stable curves of genus zero.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.152
Classification: 14D22, 14D23, 14H10, 14L24, 14M25, 16G20
Keywords: Moduli spaces, quiver representations, geometric invariant theory, algebraic stacks, root systems.
Blume, Mark 1; Hille, Lutz 1

1 Universität Münster Mathematisches Institut Einsteinstrasse 62 48149 Münster Germany
@article{ALCO_2021__4_1_89_0,
     author = {Blume, Mark and Hille, Lutz},
     title = {Quivers and moduli spaces of pointed curves of genus zero},
     journal = {Algebraic Combinatorics},
     pages = {89--124},
     publisher = {MathOA foundation},
     volume = {4},
     number = {1},
     year = {2021},
     doi = {10.5802/alco.152},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/alco.152/}
}
TY  - JOUR
AU  - Blume, Mark
AU  - Hille, Lutz
TI  - Quivers and moduli spaces of pointed curves of genus zero
JO  - Algebraic Combinatorics
PY  - 2021
SP  - 89
EP  - 124
VL  - 4
IS  - 1
PB  - MathOA foundation
UR  - http://www.numdam.org/articles/10.5802/alco.152/
DO  - 10.5802/alco.152
LA  - en
ID  - ALCO_2021__4_1_89_0
ER  - 
%0 Journal Article
%A Blume, Mark
%A Hille, Lutz
%T Quivers and moduli spaces of pointed curves of genus zero
%J Algebraic Combinatorics
%D 2021
%P 89-124
%V 4
%N 1
%I MathOA foundation
%U http://www.numdam.org/articles/10.5802/alco.152/
%R 10.5802/alco.152
%G en
%F ALCO_2021__4_1_89_0
Blume, Mark; Hille, Lutz. Quivers and moduli spaces of pointed curves of genus zero. Algebraic Combinatorics, Volume 4 (2021) no. 1, pp. 89-124. doi : 10.5802/alco.152. http://www.numdam.org/articles/10.5802/alco.152/

[1] Alper, Jarod Adequate moduli spaces and geometrically reductive group schemes, Algebr. Geom., Volume 1 (2014) no. 4, pp. 489-531 (https://arxiv.org/abs/1005.2398) | DOI | MR | Zbl

[2] Anantharaman, Sivaramakrishna Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1, Sur les groupes algébriques (Bull. Soc. Math. France, Mém.), Volume 33, Soc. Math. France, 1973, pp. 5-79 | DOI | Numdam | MR | Zbl

[3] Batyrev, Victor; Blume, Mark The functor of toric varieties associated with Weyl chambers and Losev–Manin moduli spaces, Tohoku Math. J. (2), Volume 63 (2011) no. 4, pp. 581-604 (https://arxiv.org/abs/0911.3607) | DOI | MR | Zbl

[4] Brochard, Sylvain Topologies de Grothendieck, descente, quotients, Autour des schémas en groupes. Vol. I (Panor. Synthèses), Volume 42/43, Soc. Math. France, Paris, 2014, pp. 1-62 (https://arxiv.org/abs/1210.0431) | MR | Zbl

[5] Chindris, Calin Notes on GIT-fans for quivers (https://arxiv.org/abs/0805.1440)

[6] Crawley-Boevey, William Subrepresentations of general representations of quivers, Bull. London Math. Soc., Volume 28 (1996) no. 4, pp. 363-366 | DOI | MR | Zbl

[7] Dolgachev, Igor V.; Hu, Yi Variation of geometric invariant theory quotients, Publ. Math., Inst. Hautes Étud. Sci. (1998) no. 87, pp. 5-51 (https://arxiv.org/abs/alg-geom/9402008) | DOI | Numdam | MR | Zbl

[8] Gelʼfand, Israel M.; Goresky, Mark; MacPherson, Robert D.; Serganova, Vera V. Combinatorial geometries, convex polyhedra, and Schubert cells, Adv. in Math., Volume 63 (1987) no. 3, pp. 301-316 | DOI | MR | Zbl

[9] Gelʼfand, Israel M.; Kapranov, Mikhail M.; Zelevinsky, Andrei V. Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994, x+523 pages | DOI | MR | Zbl

[10] Gerritzen, Lothar; Herrlich, Frank; van der Put, Marius Stable n-pointed trees of projective lines, Nederl. Akad. Wetensch. Indag. Math., Volume 50 (1988) no. 2, pp. 131-163 | DOI | MR | Zbl

[11] Giansiracusa, Noah; Jensen, David; Moon, Han-Bom GIT compactifications of M 0,n and flips, Adv. Math., Volume 248 (2013), pp. 242-278 (https://arxiv.org/abs/1112.0232) | DOI | MR | Zbl

[12] Grothendieck, Alexander; Dieudonné, Jean A. Éléments de géométrie algébrique. I–IV, Publ. Math., Inst. Hautes Étud. Sci., Volume 4, 8, 11, 17, 20, 24, 28, 32 (1960–1967) | Zbl

[13] Grothendieck, Alexander; Dieudonné, Jean A. Éléments de géométrie algébrique. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 166, Springer-Verlag, Berlin, 1971, ix+466 pages | MR | Zbl

[14] Grothendieck, Alexander Séminaire de géométrie algébrique, Groupes de Monodromie en Géométrie Algébrique, Tome 1, Lecture Notes in Mathematics, 288, Springer, 1972 | Zbl

[15] Hassett, Brendan Moduli spaces of weighted pointed stable curves, Adv. Math., Volume 173 (2003) no. 2, pp. 316-352 (https://arxiv.org/abs/math/0205009) | DOI | MR | Zbl

[16] Hille, Lutz; de la Peña, José Antonio Stable representations of quivers, J. Pure Appl. Algebra, Volume 172 (2002) no. 2-3, pp. 205-224 | DOI | MR | Zbl

[17] Kapranov, Mikhail M. Chow quotients of Grassmannians. I, I. M. Gelʼfand Seminar (Adv. Soviet Math.), Volume 16, Amer. Math. Soc., Providence, RI, 1993, pp. 29-110 (https://arxiv.org/abs/alg-geom/9210002) | DOI | MR | Zbl

[18] Kapranov, Mikhail M. Veronese curves and Grothendieck–Knudsen moduli space M ¯ 0,n , J. Algebraic Geom., Volume 2 (1993) no. 2, pp. 239-262 | MR | Zbl

[19] Kapranov, Mikhail M.; Sturmfels, Bernd; Zelevinsky, Andrei V. Quotients of toric varieties, Math. Ann., Volume 290 (1991) no. 4, pp. 643-655 | DOI | MR | Zbl

[20] King, Alastair D. Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2), Volume 45 (1994) no. 180, pp. 515-530 | DOI | MR | Zbl

[21] Knudsen, Finn F. The projectivity of the moduli space of stable curves. II. The stacks M g,n , Math. Scand., Volume 52 (1983) no. 2, pp. 161-199 | DOI | MR | Zbl

[22] Lazard, Daniel Autour de la platitude, Bull. Soc. Math. France, Volume 97 (1969), pp. 81-128 | DOI | Numdam | MR | Zbl

[23] Losev, Andrey A.; Manin, Yuri I. New moduli spaces of pointed curves and pencils of flat connections, Michigan Math. J., Volume 48 (2000), pp. 443-472 (https://arxiv.org/abs/math/0001003) | DOI | MR | Zbl

[24] Mumford, David; Fogarty, John; Kirwan, Frances Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 34, Springer-Verlag, Berlin, 1994, xiv+292 pages | DOI | MR

[25] Ressayre, Nicolas The GIT-equivalence for G-line bundles, Geom. Dedicata, Volume 81 (2000) no. 1-3, pp. 295-324 (https://arxiv.org/abs/math/9811053) | DOI | MR | Zbl

[26] Schofield, Aidan General representations of quivers, Proc. London Math. Soc. (3), Volume 65 (1992) no. 1, pp. 46-64 | DOI | MR | Zbl

[27] Sekiguchi, Jiro Cross ratio varieties for root systems, Kyushu J. Math., Volume 48 (1994) no. 1, pp. 123-168 | DOI | MR

[28] Sekiguchi, Jiro Cross ratio varieties for root systems of type A and the Terada model, J. Math. Sci. Univ. Tokyo, Volume 3 (1996) no. 1, pp. 181-197 | MR | Zbl

[29] Seshadri, Conjeeveram S. Geometric reductivity over arbitrary base, Advances in Math., Volume 26 (1977) no. 3, pp. 225-274 | DOI | MR | Zbl

[30] Stacks Project Authors Stacks Project (https://stacks.math.columbia.edu)

[31] Thaddeus, Michael Geometric invariant theory and flips, J. Amer. Math. Soc., Volume 9 (1996) no. 3, pp. 691-723 (https://arxiv.org/abs/alg-geom/9405004) | DOI | MR | Zbl

[32] Thaddeus, Michael Complete collineations revisited, Math. Ann., Volume 315 (1999) no. 3, pp. 469-495 (https://arxiv.org/abs/math/9808114) | DOI | MR | Zbl

Cited by Sources: