Let an elliptic fibration with general fibre . Let be the minima of the non-zero intersection numbers where runs successively through the following sets: effective divisors on , invertible sheaves spanned by global sections, ample divisors and very ample divisors. Let be the maximum of the multiplicities of the fibres of . We prove that if and only if and that if and only if .
Soit une fibration elliptique et soit une fibre générale. Soit les minima des valeurs non-nulles des nombres d’intersection où parcourt successivement les ensembles suivants : diviseurs effectifs sur , faisceaux inversibles engendrés par sections globales, diviseurs amples et diviseurs très amples. Soit le maximum des multiplicités des fibres de . On démontre que si et seulement si et que si et seulement si .
@article{AIF_1983__33_1_269_0, author = {Buium, Alexandru}, title = {Degree of the fibres of an elliptic fibration}, journal = {Annales de l'Institut Fourier}, pages = {269--276}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {33}, number = {1}, year = {1983}, doi = {10.5802/aif.911}, mrnumber = {84j:14017}, zbl = {0478.14001}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.911/} }
TY - JOUR AU - Buium, Alexandru TI - Degree of the fibres of an elliptic fibration JO - Annales de l'Institut Fourier PY - 1983 SP - 269 EP - 276 VL - 33 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.911/ DO - 10.5802/aif.911 LA - en ID - AIF_1983__33_1_269_0 ER -
Buium, Alexandru. Degree of the fibres of an elliptic fibration. Annales de l'Institut Fourier, Volume 33 (1983) no. 1, pp. 269-276. doi : 10.5802/aif.911. http://www.numdam.org/articles/10.5802/aif.911/
[1] Surfaces algébriques complexes, Astérisque, 54 (1978). | Numdam | MR | Zbl
,[2] Canonical models of surfaces of general type, Publ. Math. IHES, 42 (1972), 171-220. | Numdam | MR | Zbl
,[3] Le superficie algebriche, Zanichelli, 1949. | MR | Zbl
,[4] Principles of algebraic geometry, John Wiley & Sons, New York, 1978. | MR | Zbl
and ,[5] On compact complex analytic surfaces II, Ann. of Math., 77 (1963). | MR | Zbl
,[6] Remarks on the Kodaira vanishing theorem, J. of the Indian Math. Soc., 36 (1972), 41-51 ; Supplement to the article “Remarks on the Kodaira vanishing theorem”, J. of the Indian Math. Soc., 38 (1974), 121-124. | MR | Zbl
,Cited by Sources: