A geometric derivation of the linear Boltzmann equation for a particle interacting with a Gaussian random field, using a Fock space approach
Annales de l'Institut Fourier, Volume 64 (2014) no. 3, pp. 1031-1076.

In this article the linear Boltzmann equation is derived for a particle interacting with a Gaussian random field, in the weak coupling limit, with renewal in time of the random field. The initial data can be chosen arbitrarily. The proof is geometric and involves coherent states and semi-classical calculus.

Dans cet article, l’équation de Boltzmann linéaire est dérivée pour une particule interagissant avec un champ aléatoire gaussien, dans la limite de faible couplage, avec un renouvellement temporel du champ aléatoire. L’état initial peut être choisi de façon arbitraire. La démonstration est géométrique et fait intervenir des états cohérents et du calcul semi-classique.

DOI: 10.5802/aif.2873
Classification: 82C10, 60K37, 81Exx, 81Sxx, 81D30, 82B44, 82C40
Keywords: Linear Boltzmann equation, processes in random environments, quantum field theory, coherent states, kinetic theory of gases.
Mot clés : Équation de Boltzmann linéaire, processus dans des environnements aléatoires, théorie quantique des champs, états cohérents, théorie cinétique des gaz
Breteaux, Sébastien 1

1 IRMAR, UMR-CNRS 6625, Université de Rennes 1, campus de Beaulieu, 35042 Rennes Cedex, France. ENS de Cachan, Antenne de Bretagne, Campus de Ker Lann, Av. R. Schuman, 35170 Bruz, France.
@article{AIF_2014__64_3_1031_0,
     author = {Breteaux, S\'ebastien},
     title = {A geometric derivation of the linear {Boltzmann} equation for a particle interacting with a {Gaussian} random field, using a {Fock} space approach},
     journal = {Annales de l'Institut Fourier},
     pages = {1031--1076},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {64},
     number = {3},
     year = {2014},
     doi = {10.5802/aif.2873},
     mrnumber = {3330163},
     zbl = {1315.82015},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2873/}
}
TY  - JOUR
AU  - Breteaux, Sébastien
TI  - A geometric derivation of the linear Boltzmann equation for a particle interacting with a Gaussian random field, using a Fock space approach
JO  - Annales de l'Institut Fourier
PY  - 2014
SP  - 1031
EP  - 1076
VL  - 64
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2873/
DO  - 10.5802/aif.2873
LA  - en
ID  - AIF_2014__64_3_1031_0
ER  - 
%0 Journal Article
%A Breteaux, Sébastien
%T A geometric derivation of the linear Boltzmann equation for a particle interacting with a Gaussian random field, using a Fock space approach
%J Annales de l'Institut Fourier
%D 2014
%P 1031-1076
%V 64
%N 3
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2873/
%R 10.5802/aif.2873
%G en
%F AIF_2014__64_3_1031_0
Breteaux, Sébastien. A geometric derivation of the linear Boltzmann equation for a particle interacting with a Gaussian random field, using a Fock space approach. Annales de l'Institut Fourier, Volume 64 (2014) no. 3, pp. 1031-1076. doi : 10.5802/aif.2873. http://www.numdam.org/articles/10.5802/aif.2873/

[1] Ammari, Zied; Nier, Francis Mean field limit for bosons and infinite dimensional phase-space analysis, Ann. Henri Poincaré, Volume 9 (2008) no. 8, pp. 1503-1574 | DOI | MR | Zbl

[2] Ammari, Zied; Nier, Francis Mean field limit for bosons and propagation of Wigner measures, J. Math. Phys., Volume 50 (2009) no. 4, pp. 042107, 16 | DOI | MR | Zbl

[3] Attal, Stéphane; Joye, Alain Weak coupling and continuous limits for repeated quantum interactions, J. Stat. Phys., Volume 126 (2007) no. 6, pp. 1241-1283 | DOI | MR | Zbl

[4] Attal, Stéphane; Pautrat, Yan From repeated to continuous quantum interactions, Ann. Henri Poincaré, Volume 7 (2006) no. 1, pp. 59-104 | DOI | MR | Zbl

[5] Bal, Guillaume; Papanicolaou, George; Ryzhik, Leonid Radiative transport limit for the random Schrödinger equation, Nonlinearity, Volume 15 (2002) no. 2, pp. 513-529 | DOI | MR | Zbl

[6] Bechouche, Philippe; Poupaud, Frédéric; Soler, Juan Quantum transport and Boltzmann operators, J. Stat. Phys., Volume 122 (2006) no. 3, pp. 417-436 | DOI | MR | Zbl

[7] Berezin, Feliks A. The method of second quantization, Academic Press, New York, 1966, pp. xii+228 | MR | Zbl

[8] Boldrighini, Carlo; Bunimovich, Leonid A.; Sinaĭ, Yakov G. On the Boltzmann equation for the Lorentz gas, J. Statist. Phys., Volume 32 (1983) no. 3, pp. 477-501 | MR | Zbl

[9] Bratteli, Ola; Robinson, Derek W. Operator algebras and quantum statistical mechanics. 2, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997, pp. xiv+519 (Equilibrium states. Models in quantum statistical mechanics) | MR | Zbl

[10] Burq, Nicolas Mesures semi-classiques et mesures de défaut, Astérisque (1997) no. 245, pp. Exp. No. 826, 4, 167-195 (Séminaire Bourbaki, Vol. 1996/97) | Numdam | MR | Zbl

[11] Chen, Thomas Localization lengths and Boltzmann limit for the Anderson model at small disorders in dimension 3, J. Stat. Phys., Volume 120 (2005) no. 1-2, pp. 279-337 | DOI | MR | Zbl

[12] Dautray, Robert; Lions, Jacques-Louis Analyse mathématique et calcul numérique pour les sciences et les techniques. Tome 1, Collection du Commissariat à l’Énergie Atomique: Série Scientifique. [Collection of the Atomic Energy Commission: Science Series], Masson, Paris, 1984, pp. xxiii+1411 | MR | Zbl

[13] Dautray, Robert; Lions, Jacques-Louis Analyse mathématique et calcul numérique pour les sciences et les techniques. Tome 3, Collection du Commissariat à l’Énergie Atomique: Série Scientifique. [Collection of the Atomic Energy Commission: Science Series], Masson, Paris, 1985, pp. xxxiv+1303 | Zbl

[14] Erdős, László; Salmhofer, Manfred; Yau, Horng-Tzer Quantum diffusion of the random Schrödinger evolution in the scaling limit. II. The recollision diagrams, Comm. Math. Phys., Volume 271 (2007) no. 1, pp. 1-53 | DOI | MR | Zbl

[15] Erdős, László; Salmhofer, Manfred; Yau, Horng-Tzer Quantum diffusion of the random Schrödinger evolution in the scaling limit, Acta Math., Volume 200 (2008) no. 2, pp. 211-277 | DOI | MR | Zbl

[16] Erdös, László; Yau, Horng-Tzer Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation, Comm. Pure Appl. Math., Volume 53 (2000) no. 6, pp. 667-735 | DOI | Zbl

[17] Folland, Gerald B. Quantum field theory, Mathematical Surveys and Monographs, 149, American Mathematical Society, Providence, RI, 2008, pp. xii+325 (A tourist guide for mathematicians) | MR | Zbl

[18] Gallavotti, Giovanni Divergences and the Approach to Equilibrium in the Lorentz and the Wind-Tree Models, Phys. Rev., Volume 185 (1969) no. 1, pp. 308-322 | DOI

[19] Gérard, Patrick Mesures semi-classiques et ondes de Bloch, Séminaire sur les Équations aux Dérivées Partielles, 1990–1991, École Polytech., Palaiseau, 1991, pp. Exp. No. XVI, 19 | Numdam | MR | Zbl

[20] Gérard, Patrick Microlocal defect measures, Comm. Partial Differential Equations, Volume 16 (1991) no. 11, pp. 1761-1794 | DOI | MR | Zbl

[21] Gérard, Patrick; Markowich, Peter A.; Mauser, Norbert J.; Poupaud, Frédéric Homogenization limits and Wigner transforms, Comm. Pure Appl. Math., Volume 50 (1997) no. 4, pp. 323-379 | DOI | MR | Zbl

[22] Gérard, Patrick; Markowich, Peter A.; Mauser, Norbert J.; Poupaud, Frédéric Erratum: “Homogenization limits and Wigner transforms” [Comm. Pure Appl. Math. 50 (1997), no. 4, 323–379; MR1438151 (98d:35020)], Comm. Pure Appl. Math., Volume 53 (2000) no. 2, pp. 280-281 | DOI | MR | Zbl

[23] Ginibre, Jean; Velo, Giorgio The classical field limit of scattering theory for nonrelativistic many-boson systems. I, Comm. Math. Phys., Volume 66 (1979) no. 1, pp. 37-76 | MR | Zbl

[24] Ginibre, Jean; Velo, Giorgio The classical field limit of scattering theory for nonrelativistic many-boson systems. II, Comm. Math. Phys., Volume 68 (1979) no. 1, pp. 45-68 http://projecteuclid.org/getRecord?id=euclid.cmp/1103905266 | MR | Zbl

[25] Ginibre, Jean; Velo, Giorgio The classical field limit of nonrelativistic bosons. I. Borel summability for bounded potentials, Ann. Physics, Volume 128 (1980) no. 2, pp. 243-285 | MR | Zbl

[26] Ginibre, Jean; Velo, Giorgio The classical field limit of nonrelativistic bosons. II. Asymptotic expansions for general potentials, Ann. Inst. H. Poincaré Sect. A (N.S.), Volume 33 (1980) no. 4, pp. 363-394 | Numdam | MR | Zbl

[27] Glimm, James; Jaffe, Arthur Quantum physics, Springer-Verlag, New York, 1987, pp. xxii+535 (A functional integral point of view) | MR | Zbl

[28] Hepp, Klaus The classical limit for quantum mechanical correlation functions, Comm. Math. Phys., Volume 35 (1974), pp. 265-277 | MR

[29] Ho, Ting-Guo; Landau, Lawrence J.; Wilkins, A. J. On the weak coupling limit for a Fermi gas in a random potential, Rev. Math. Phys., Volume 5 (1993) no. 2, pp. 209-298 | DOI | Zbl

[30] Lions, Pierre-Louis; Paul, Thierry Sur les mesures de Wigner, Rev. Mat. Iberoamericana, Volume 9 (1993) no. 3, pp. 553-618 | MR | Zbl

[31] Martinez, André An introduction to semiclassical and microlocal analysis, Universitext, Springer-Verlag, New York, 2002, pp. viii+190 | MR | Zbl

[32] Poupaud, Frédéric; Vasseur, Alexis Classical and quantum transport in random media, J. Math. Pures Appl. (9), Volume 82 (2003) no. 6, pp. 711-748 | DOI | MR | Zbl

[33] Reed, Michael; Simon, Barry Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975, pp. xv+361 | MR | Zbl

[34] Reed, Michael; Simon, Barry Methods of modern mathematical physics. III, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1979, pp. xv+463 (Scattering theory) | MR | Zbl

[35] Simon, Barry The P(φ) 2 Euclidean (quantum) field theory, Princeton University Press, Princeton, N.J., 1974, pp. xx+392 (Princeton Series in Physics) | MR | Zbl

[36] Spohn, Herbert Derivation of the transport equation for electrons moving through random impurities, J. Statist. Phys., Volume 17 (1977) no. 6, pp. 385-412 | MR | Zbl

[37] Spohn, Herbert Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Mod. Phys., Volume 52 (1980) no. 3, pp. 569-615 | DOI | MR | Zbl

Cited by Sources: