Deformations of free and linear free divisors
Annales de l'Institut Fourier, Volume 63 (2013) no. 6, pp. 2097-2136.

We study deformations of free and linear free divisors. We introduce a complex similar to the de Rham complex whose cohomology calculates the deformation spaces. This cohomology turns out to be zero for all reductive linear free divisors and to be constructible for Koszul free divisors and weighted homogeneous free divisors.

Nous étudions les déformations de diviseurs libres et linéaires libres. Nous introduisons un complexe similaire au complexe de de Rham dont la cohomologie calcule les espaces de déformations. Cette cohomologie s’avère être zéro pour tous les diviseurs réductifs linéaires libres et être constructible pour les diviseurs libres de Koszul et les diviseurs libres quasi-homogènes.

DOI: 10.5802/aif.2824
Classification: 14B07,  13D10,  14F40
Keywords: Free divisor, linear free divisor, non-isolated singularity, deformation theory, logarithmic de Rham cohomology
Torielli, Michele 1

1 University of Warwick Department of Mathematics Coventry CV4 7AL (U.K.)
@article{AIF_2013__63_6_2097_0,
     author = {Torielli, Michele},
     title = {Deformations of free and linear free divisors},
     journal = {Annales de l'Institut Fourier},
     pages = {2097--2136},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {63},
     number = {6},
     year = {2013},
     doi = {10.5802/aif.2824},
     mrnumber = {3237442},
     zbl = {1301.14004},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2824/}
}
TY  - JOUR
AU  - Torielli, Michele
TI  - Deformations of free and linear free divisors
JO  - Annales de l'Institut Fourier
PY  - 2013
DA  - 2013///
SP  - 2097
EP  - 2136
VL  - 63
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2824/
UR  - https://www.ams.org/mathscinet-getitem?mr=3237442
UR  - https://zbmath.org/?q=an%3A1301.14004
UR  - https://doi.org/10.5802/aif.2824
DO  - 10.5802/aif.2824
LA  - en
ID  - AIF_2013__63_6_2097_0
ER  - 
%0 Journal Article
%A Torielli, Michele
%T Deformations of free and linear free divisors
%J Annales de l'Institut Fourier
%D 2013
%P 2097-2136
%V 63
%N 6
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2824
%R 10.5802/aif.2824
%G en
%F AIF_2013__63_6_2097_0
Torielli, Michele. Deformations of free and linear free divisors. Annales de l'Institut Fourier, Volume 63 (2013) no. 6, pp. 2097-2136. doi : 10.5802/aif.2824. http://www.numdam.org/articles/10.5802/aif.2824/

[1] Abad, Camilo Arias; Crainic, Marius Representations up to homotopy of Lie algebroids, J. Reine Angew. Math., Volume 663 (2012), pp. 91-126 | MR | Zbl

[2] Buchweitz, R.O.; Mond, D. Linear free divisors and quiver representations, Singularities and computer algebra, Volume 324 (2006), pp. 41 | DOI | MR | Zbl

[3] Calderón Moreno, F. J. Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor, Ann. Sci. École Norm. Sup. 4e série, Volume 32 (1999), pp. 701-714 | EuDML | Numdam | MR | Zbl

[4] Calderón Moreno, F. J.; Narváez Macarro, L. Locally quasi-homogeneous free divisors are Koszul free, Proceedings of the Steklov Institute of Mathematics-Interperiodica Translation, Volume 238 (2002), pp. 72-76 | MR | Zbl

[5] Calderón Moreno, F. J.; Narváez Macarro, L. Dualité et comparaison sur les complexes de de Rham logarithmiques par rapport aux diviseurs libres, Ann. Inst. Fourier (Grenoble), Volume 55 (2005) no. 1, pp. 47-75 | DOI | EuDML | Numdam | MR | Zbl

[6] De Gregorio, I.; Mond, D.; Sevenheck, C. Linear free divisors and Frobenius manifolds, Compos. Math, Volume 145 (2009), pp. 1305-1350 | DOI | MR | Zbl

[7] Dixmier, Jacques Enveloping algebras, North-Holland Publishing Co., Amsterdam, 1977, pp. xvi+375 (North-Holland Mathematical Library, Vol. 14, Translated from the French) | MR | Zbl

[8] Granger, M.; Mond, D.; Nieto-Reyes, A.; Schulze, M. Linear free divisors and the global logarithmic comparison theorem, Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 2, pp. 811-850 | DOI | EuDML | Numdam | MR | Zbl

[9] Greuel, G.-M.; Lossen, C.; Shustin, E. Introduction to singularities and deformations, Springer Monographs in Mathematics, Springer, Berlin, 2007, pp. xii+471 | MR | Zbl

[10] Hartshorne, Robin Deformation theory, Graduate Texts in Mathematics, 257, Springer, New York, 2010, pp. viii+234 | MR | Zbl

[11] Hochschild, G.; Serre, J.-P. Cohomology of Lie algebras, Annals of Mathematics, Volume 57 (1953) no. 3, pp. 591-603 | DOI | MR | Zbl

[12] Orlik, P.; Terao, H. Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 300, Springer-Verlag, Berlin, 1992, pp. xviii+325 | MR | Zbl

[13] Rinehart, G. S. Differential forms on general commutative algebras, Trans. Amer. Math. Soc., Volume 108 (1963), pp. 195-222 | DOI | MR | Zbl

[14] Saito, K. Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 27 (1980) no. 2, pp. 265-291 | MR | Zbl

[15] Schlessinger, M. Functors of Artin rings, Trans. Amer. Math. Soc., Volume 130 (1968), pp. 208-222 | DOI | MR | Zbl

[16] Sevenheck, C. Lagrange-singularitäten und ihre deformationen, Diplomarbeit, Heinrich-Heine Universität, Düsseldorf, 1999

[17] Sevenheck, C. Lagrangian singularities, Cuvillier Verlag, Göttingen, 2003, pp. x+190 (Dissertation, Johannes-Gutenberg-Universität, Mainz, 2003) | MR | Zbl

[18] Sevenheck, C.; van Straten, D. Deformation of singular Lagrangian subvarieties, Math. Ann., Volume 327 (2003) no. 1, pp. 79-102 | DOI | MR | Zbl

[19] Torielli, M. Free divisors and their deformations, Univeristy of Warwick, June (2012) (Ph. D. Thesis)

[20] Weibel, C. A. An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, Cambridge, 1994, pp. xiv+450 | MR | Zbl

Cited by Sources: