We define the Bloch spectrum of a quantum graph to be the map that assigns to each element in the deRham cohomology the spectrum of an associated magnetic Schrödinger operator. We show that the Bloch spectrum determines the Albanese torus, the block structure and the planarity of the graph. It determines a geometric dual of a planar graph. This enables us to show that the Bloch spectrum indentifies and completely determines planar -connected quantum graphs.
Nous définissons le spectre de Bloch d’un graphe quantique comme la fonction qui assigne à chaque élément de la cohomologie de deRham le spectre d’un opérateur de Schrödinger magnétique associé. On montre que le spectre de Bloch détermine le tore d’Albanese, la structure de bloc et la planarité du graphe. Il détermine un dual géometrique d’un graphe planaire. Cela nous permet de montrer que le spectre de Bloch identifie et détermine complètement les graphes quantiques planaires -connexes.
Keywords: quantum graphs, Schrödinger operators, spectrum, inverse spectral problem
Mot clés : graphes quantiques, opérateurs Schrödinger, spectre, problème spectral inverse
@article{AIF_2013__63_3_1149_0, author = {Rueckriemen, Ralf}, title = {Recovering quantum graphs from their {Bloch} spectrum}, journal = {Annales de l'Institut Fourier}, pages = {1149--1176}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {3}, year = {2013}, doi = {10.5802/aif.2786}, zbl = {1301.35195}, mrnumber = {3137482}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2786/} }
TY - JOUR AU - Rueckriemen, Ralf TI - Recovering quantum graphs from their Bloch spectrum JO - Annales de l'Institut Fourier PY - 2013 SP - 1149 EP - 1176 VL - 63 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2786/ DO - 10.5802/aif.2786 LA - en ID - AIF_2013__63_3_1149_0 ER -
%0 Journal Article %A Rueckriemen, Ralf %T Recovering quantum graphs from their Bloch spectrum %J Annales de l'Institut Fourier %D 2013 %P 1149-1176 %V 63 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2786/ %R 10.5802/aif.2786 %G en %F AIF_2013__63_3_1149_0
Rueckriemen, Ralf. Recovering quantum graphs from their Bloch spectrum. Annales de l'Institut Fourier, Volume 63 (2013) no. 3, pp. 1149-1176. doi : 10.5802/aif.2786. http://www.numdam.org/articles/10.5802/aif.2786/
[1] The isospectral fruits of representation theory: quantum graphs and drums, J. Phys. A, Volume 42 (2009) no. 17, pp. 175202, 42 | DOI | MR | Zbl
[2] Can one hear the shape of a network?, Partial differential equations on multistructures (Luminy, 1999) (Lecture Notes in Pure and Appl. Math.), Volume 219, Dekker, New York, 2001, pp. 19-36 | MR | Zbl
[3] Trace formulae for quantum graphs, Analysis on graphs and its applications (Proc. Sympos. Pure Math.), Volume 77, Amer. Math. Soc., Providence, RI, 2008, pp. 247-259 | MR | Zbl
[4] Graph theory, Graduate Texts in Mathematics, 173, Springer-Verlag, Berlin, 2005 | MR | Zbl
[5] On isospectral periodic potentials in . II, Comm. Pure Appl. Math., Volume 37 (1984) no. 6, pp. 715-753 | DOI | MR | Zbl
[6] Differential forms and heat diffusion on one-dimensional singular varieties, Bull. Sci. Math., Volume 115 (1991) no. 1, pp. 61-79 | MR | Zbl
[7] Inverse spectral results on even dimensional tori, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 7, pp. 2445-2501 | DOI | Numdam | MR | Zbl
[8] Inverse spectral results on two-dimensional tori, J. Amer. Math. Soc., Volume 3 (1990) no. 2, pp. 375-387 | DOI | MR | Zbl
[9] Can one hear the shape of a graph?, J. Phys. A, Volume 34 (2001) no. 31, pp. 6061-6068 | DOI | MR | Zbl
[10] Can one hear the shape of a drum?, Amer. Math. Monthly, Volume 73 (1966) no. 4, part II, pp. 1-23 | DOI | MR | Zbl
[11] Jacobian tori associated with a finite graph and its abelian covering graphs, Adv. in Appl. Math., Volume 24 (2000) no. 2, pp. 89-110 | DOI | MR | Zbl
[12] Periodic orbit theory and spectral statistics for quantum graphs, Ann. Physics, Volume 274 (1999) no. 1, pp. 76-124 | DOI | MR | Zbl
[13] Quantum graphs: an introduction and a brief survey, Analysis on graphs and its applications (Proc. Sympos. Pure Math.), Volume 77, Amer. Math. Soc., Providence, RI, 2008, pp. 291-312 | MR | Zbl
[14] Graphs on surfaces, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2001 | MR | Zbl
[15] First order approach and index theorems for discrete and metric graphs, Ann. Henri Poincaré, Volume 10 (2009) no. 5, pp. 823-866 | DOI | MR | Zbl
[16] Le spectre du laplacien sur un graphe, Théorie du potentiel (Orsay, 1983) (Lecture Notes in Math.), Volume 1096, Springer, Berlin, 1984, pp. 521-539 | MR | Zbl
Cited by Sources: