Finiteness of odd perfect powers with four nonzero binary digits
Annales de l'Institut Fourier, Volume 63 (2013) no. 2, pp. 715-731.

We prove that there are only finitely many odd perfect powers in having precisely four nonzero digits in their binary expansion. The proofs in fact lead to more general results, but we have preferred to limit ourselves to the present statement for the sake of simplicity and clarity of illustration of the methods. These methods combine various ingredients: results (derived from the Subspace Theorem) on integer values of analytic series at S-unit points (in a suitable ν-adic convergence), Roth’s general theorem, 2-adic Padé approximations (by integers) to numbers in varying number fields and lower bounds for linear forms in two logarithms (both in the usual and in the 2-adic context).

Nous démontrons la finitude de l’ensemble des puissances pures impaires ayant quatre chiffres non nuls dans leur écriture binaire. La preuve de ce théorème amène naturellement à des énoncés plus généraux, mais, pour simplifier, nous avons préféré nous borner à ce résultat. Notre méthode combine plusieurs ingrédients  : des résultats (dérivés du théorème du sous-espace) sur les valeurs entières de séries analytiques aux points S-unités, le théorème de Roth généralisé, les approximations de Padé 2-adiques de nombres algébriques dans un corps variable, des minorations de formes linéaires en deux logarithmes (par rapport aux valeurs absolues archimédiennes et 2-adique).

DOI: 10.5802/aif.2774
Classification: 11J25,  11J86,  11J68
Keywords: Diophantine equations, diophantine approximations, perfect powers
Corvaja, Pietro 1; Zannier, Umberto 2

1 Dipartimento di Matematica e Informatica Via delle Scienze, 206 33100 Udine (Italy)
2 Scuola Normale Superiore Piazza dei Cavalieri, 7 56100 Pisa (Italy)
@article{AIF_2013__63_2_715_0,
     author = {Corvaja, Pietro and Zannier, Umberto},
     title = {Finiteness of odd perfect powers with four nonzero binary digits},
     journal = {Annales de l'Institut Fourier},
     pages = {715--731},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {63},
     number = {2},
     year = {2013},
     doi = {10.5802/aif.2774},
     mrnumber = {3112846},
     zbl = {1294.11117},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2774/}
}
TY  - JOUR
AU  - Corvaja, Pietro
AU  - Zannier, Umberto
TI  - Finiteness of odd perfect powers with four nonzero binary digits
JO  - Annales de l'Institut Fourier
PY  - 2013
DA  - 2013///
SP  - 715
EP  - 731
VL  - 63
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2774/
UR  - https://www.ams.org/mathscinet-getitem?mr=3112846
UR  - https://zbmath.org/?q=an%3A1294.11117
UR  - https://doi.org/10.5802/aif.2774
DO  - 10.5802/aif.2774
LA  - en
ID  - AIF_2013__63_2_715_0
ER  - 
%0 Journal Article
%A Corvaja, Pietro
%A Zannier, Umberto
%T Finiteness of odd perfect powers with four nonzero binary digits
%J Annales de l'Institut Fourier
%D 2013
%P 715-731
%V 63
%N 2
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2774
%R 10.5802/aif.2774
%G en
%F AIF_2013__63_2_715_0
Corvaja, Pietro; Zannier, Umberto. Finiteness of odd perfect powers with four nonzero binary digits. Annales de l'Institut Fourier, Volume 63 (2013) no. 2, pp. 715-731. doi : 10.5802/aif.2774. http://www.numdam.org/articles/10.5802/aif.2774/

[1] Bennett, M.; Bugeaud, Y.; Mignotte, M. Perfect powers with few binary digits and related diophantine problems, Annali Scuola Normale Sup. Pisa, Volume XII, 4 (2013), pp. 14 | MR | Zbl

[2] Bombieri, E.; Gubler, W. Heights in Diophantine geometry, New Mathematical Monographs, 4, Cambridge University Press, 2006 | MR | Zbl

[3] Corvaja, P.; Zannier, U. On the diophantine equation f(a m ,y)=b n , Acta Arith., Volume 94 (2000) no. 1, pp. 25-40 | EuDML | MR | Zbl

[4] Corvaja, P.; Zannier, U. S-unit points on analytic hypersurfaces, Ann. Sci. École Norm. Sup. (4), Volume 38 (2005) no. 1, pp. 76-92 | EuDML | MR | Zbl

[5] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. Higher transcendental functions, I, McGraw-Hill, 1953 | MR | Zbl

[6] Le, M. A note on the diophantine equation x m -1 x-1=y n , Acta Arith., Volume 44 (1993) no. 1, pp. 19-28 | EuDML | MR | Zbl

[7] Schinzel, A. Polynomials with special regard to reducibility, Encyclopedia of mathematics and its applications, Cambridge University Press, 2000 | MR | Zbl

[8] Waldschmidt, M.; Amoroso, F.; Zannier, U. Linear Independence Measures for Logarithms of Algebraic Numbers, Diophantine approximation (Lecture Notes in Math.), Volume 1819, Springer, 2003, pp. 249-344 (Cetraro, 2000) | MR | Zbl

[9] Yu, K. p-adic logarithmic forms and group varieties. II, Acta Arith., Volume 89 (1999) no. 4, pp. 337-378 | EuDML | MR | Zbl

[10] Zannier, U. Roth Theorem, Integral Points and certain ramified covers of 1 , Analytic Number Theory - Essays in Honour of Klaus Roth, Cambridge University Press, 2009, pp. 471-491 | MR | Zbl

Cited by Sources: