The local integration of Leibniz algebras
Annales de l'Institut Fourier, Volume 63 (2013) no. 1, pp. 1-35.

This article gives a local answer to the coquecigrue problem for Leibniz algebras, that is, the problem of finding a generalization of the (Lie) group structure such that Leibniz algebras are the corresponding tangent algebra structure. Using links between Leibniz algebra cohomology and Lie rack cohomology, we generalize the integration of a Lie algebra into a Lie group by proving that every Leibniz algebra is isomorphic to the tangent Leibniz algebra of a local Lie rack. This article ends with an example of a Leibniz algebra integration in dimension 5.

Cet article apporte une solution locale au problème des coquecigrues pour les algèbres de Leibniz. Ce problème consiste à trouver une généralisation de la structure de groupe (de Lie) dont les algèbres de Leibniz sont les structures tangentes associées. En utilisant les liens entre cohomologie d’algèbre de Leibniz et cohomologie de rack de Lie, nous généralisons l’intégration d’une algèbre de Lie en un groupe de Lie en prouvant que toute algèbre de Leibniz est isomorphe à l’algèbre de Leibniz tangente d’un rack de Lie local. Cet article se termine avec l’exemple de l’intégration d’une algèbre de Leibniz de dimension 5.

DOI: 10.5802/aif.2754
Classification: 17A32, 20M99
Keywords: Leibniz algebra, Lie rack, Leibniz algebra cohomology, rack cohomology.
Mot clés : Algèbre de Leibniz, rack de Lie, cohomologie d’algèbre de Leibniz, cohomologie de rack.
Covez, Simon 1

1 Université du Luxembourg Campus Kirchberg Mathematics Research Unit 6, rue Richard Coudenhove-Kalergi L-1359Luxembourg Grand Duché du Luxembourg
@article{AIF_2013__63_1_1_0,
     author = {Covez, Simon},
     title = {The local integration of {Leibniz} algebras},
     journal = {Annales de l'Institut Fourier},
     pages = {1--35},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {63},
     number = {1},
     year = {2013},
     doi = {10.5802/aif.2754},
     zbl = {06177075},
     mrnumber = {3089194},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2754/}
}
TY  - JOUR
AU  - Covez, Simon
TI  - The local integration of Leibniz algebras
JO  - Annales de l'Institut Fourier
PY  - 2013
SP  - 1
EP  - 35
VL  - 63
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2754/
DO  - 10.5802/aif.2754
LA  - en
ID  - AIF_2013__63_1_1_0
ER  - 
%0 Journal Article
%A Covez, Simon
%T The local integration of Leibniz algebras
%J Annales de l'Institut Fourier
%D 2013
%P 1-35
%V 63
%N 1
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2754/
%R 10.5802/aif.2754
%G en
%F AIF_2013__63_1_1_0
Covez, Simon. The local integration of Leibniz algebras. Annales de l'Institut Fourier, Volume 63 (2013) no. 1, pp. 1-35. doi : 10.5802/aif.2754. http://www.numdam.org/articles/10.5802/aif.2754/

[1] Andruskiewitsch, Nicolás; Graña, Matías From racks to pointed Hopf algebras, Adv. Math., Volume 178 (2003) no. 2, pp. 177-243 | DOI | MR | Zbl

[2] Cartan, E. Le troisième théorème fondamental de Lie, C.R. Acad. Sc. T., Volume 190 (1930), pp. 914-1005 | JFM

[3] Covez, S. L’intégration locale des algèbres de Leibniz, 2010 (PhD thesis. Available at http://tel.archives-ouvertes.fr/tel-00495469/)

[4] van Est, W. T. A group theoretic interpretation of area in the elementary geometries., Simon Stevin, Volume 32 (1958), pp. 29-38 | MR | Zbl

[5] van Est, W. T. Local and global groups. I, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math., Volume 24 (1962), pp. 391-408 | MR | Zbl

[6] van Est, W. T. Local and global groups. II, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math., Volume 24 (1962), pp. 409-425 | MR | Zbl

[7] Fenn, Roger; Rourke, Colin Racks and links in codimension two, J. Knot Theory Ramifications, Volume 1 (1992) no. 4, pp. 343-406 | DOI | MR | Zbl

[8] Jackson, Nicholas Extensions of racks and quandles, Homology Homotopy Appl., Volume 7 (2005) no. 1, pp. 151-167 http://projecteuclid.org/getRecord?id=euclid.hha/1139839510 | EuDML | MR | Zbl

[9] Kinyon, Michael K. Leibniz algebras, Lie racks, and digroups, J. Lie Theory, Volume 17 (2007) no. 1, pp. 99-114 | MR | Zbl

[10] Loday, J. L.; Pirashvili, T. The tensor category of linear maps and Leibniz algebras, Georgian Math. J., Volume 5 (1998) no. 3, pp. 263-276 | DOI | MR | Zbl

[11] Loday, Jean-Louis Une version non commutative des algèbres de Lie: les algèbres de Leibniz, R.C.P. 25, Vol. 44 (French) (Strasbourg, 1992) (Prépubl. Inst. Rech. Math. Av.), Volume 1993/41, Univ. Louis Pasteur, Strasbourg, 1993, pp. 127-151 | MR | Zbl

[12] Loday, Jean-Louis Cyclic homology, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 301, Springer-Verlag, Berlin, 1998 (Appendix E by María O. Ronco, Chapter 13 by the author in collaboration with Teimuraz Pirashvili) | MR | Zbl

[13] Loday, Jean-Louis; Pirashvili, Teimuraz Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., Volume 296 (1993) no. 1, pp. 139-158 | DOI | MR | Zbl

[14] Neeb, Karl-Hermann Central extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier (Grenoble), Volume 52 (2002) no. 5, pp. 1365-1442 | DOI | Numdam | MR | Zbl

[15] Neeb, Karl-Hermann Abelian extensions of infinite-dimensional Lie groups, Travaux mathématiques. Fasc. XV (Trav. Math., XV), Univ. Luxemb., Luxembourg, 2004, pp. 69-194 | MR | Zbl

[16] Smith, P. A. The complex of a group relative to a set of generators. II, Ann. of Math. (2), Volume 54 (1951), pp. 403-424 | DOI | MR | Zbl

[17] Smith, P. A. Some topological notions connected with a set of generators, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, Amer. Math. Soc., Providence, R. I. (1952), pp. 436-441 | MR | Zbl

Cited by Sources: