Dégénerescence locale des transformations conformes pseudo-riemanniennes
Annales de l'Institut Fourier, Tome 62 (2012) no. 5, pp. 1627-1669.

Nous étudions l’ensemble Conf(M,N) des immersions conformes entre deux variétés pseudo-riemanniennes (M,g) et (N,h). Nous caractérisons notamment l’adhérence de Conf(M,N) dans l’espace des applications continues 𝒞 0 (M,N), et décrivons quelques propriétés géométriques de (M,g) lorsque cette adhérence est non triviale.

We study the set Conf(M,N) of conformal immersions between two pseudo-Riemannian manifolds (M,g) and (N,h). We characterize the closure of Conf(M,N) in the space of continuous maps from M to N, and we investigate the geometric properties of (M,g) whenever this closure is nontrivial.

DOI : https://doi.org/10.5802/aif.2732
Classification : 53A30,  53C50
Mots clés : transformations conformes, structures pseudo-riemanniennes.
@article{AIF_2012__62_5_1627_0,
     author = {Frances, Charles},
     title = {D\'eg\'enerescence locale des transformations conformes pseudo-riemanniennes},
     journal = {Annales de l'Institut Fourier},
     pages = {1627--1669},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {62},
     number = {5},
     year = {2012},
     doi = {10.5802/aif.2732},
     mrnumber = {3025150},
     zbl = {1261.53052},
     language = {fr},
     url = {http://www.numdam.org/articles/10.5802/aif.2732/}
}
TY  - JOUR
AU  - Frances, Charles
TI  - Dégénerescence locale des transformations conformes pseudo-riemanniennes
JO  - Annales de l'Institut Fourier
PY  - 2012
DA  - 2012///
SP  - 1627
EP  - 1669
VL  - 62
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2732/
UR  - https://www.ams.org/mathscinet-getitem?mr=3025150
UR  - https://zbmath.org/?q=an%3A1261.53052
UR  - https://doi.org/10.5802/aif.2732
DO  - 10.5802/aif.2732
LA  - fr
ID  - AIF_2012__62_5_1627_0
ER  - 
 Frances, Charles. Dégénerescence locale des transformations conformes pseudo-riemanniennes. Annales de l'Institut Fourier, Tome 62 (2012) no. 5, pp. 1627-1669. doi : 10.5802/aif.2732. http://www.numdam.org/articles/10.5802/aif.2732/

[1] Alekseevski, D. Self-similar Lorentzian manifolds, Ann. Global Anal. Geom., Volume 3 (1985) no. 1, pp. 59-84 | Article | MR 812313 | Zbl 0538.53060

[2] Barbot, T.; Charette, V.; Drumm, T.; Goldman, W.M.; Melnick, K. A primer on the (2+1) Einstein universe., Recent Developments in Pseudo-Riemannian Geometry, ESI Lectures in Mathematics and Physics, 2008 | MR 2436232 | Zbl 1154.53047

[3] Besse, A Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, Berlin, 1987 | Zbl 1147.53001

[4] Čap, A.; Slovák, J.; Žádník, V. On distinguished curves in parabolic geometries, Transform. Groups, Volume 9 (2004) no. 2, pp. 143-166 | Article | MR 2056534 | Zbl 1070.53021

[5] Ferrand, J. Les géodésiques des structures conformes, C. R. Acad. Sci. Paris Sér. I Math., Volume 294 (1982) no. 18, pp. 629-632 | MR 664297 | Zbl 0487.53011

[6] Ferrand, J. Convergence and degeneracy of quasiconformal maps of Riemannian manifolds, J. Anal. Math., Volume 69 (1996), pp. 1-24 | Article | MR 1428092 | Zbl 0871.53031

[7] Ferrand, J. The action of conformal transformations on a Riemannian manifold, Math. Ann., Volume 304 (1996) no. 2, pp. 277-291 | Article | MR 1371767 | Zbl 0866.53027

[8] Frances, C. Géométrie et dynamique lorentziennes conformes (Thèse, ENS Lyon, 2002, available at http ://mahery.math.u-psud.fr/frances/)

[9] Frances, C. Sur le groupe d’automorphismes des géométries paraboliques de rang 1, Ann. Sci. École Norm. Sup. (4), Volume 40 (2007) no. 5, pp. 741-764 (English version : eprint arXiv :math/0608.537v1) | Numdam | MR 2382860 | Zbl 1135.53016

[10] Gehring, F. W. The Carathéodory convergence theorem for quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. A I No., Volume 336/11 (1963), pp. 21 | MR 160898 | Zbl 0136.38102

[11] Kobayashi, S. Transformation groups in differential geometry. Reprint of the 1972 edition., Classics in Mathematics, Springer-Verlag, Berlin, 1995 | MR 1336823 | Zbl 0829.53023

[12] Kuehnel, W.; Rademacher, H.B. Liouville’s theorem in conformal geometry, Pures et Appl. (9) (to appear) (Classics in Mathematics) | MR 2355458 | Zbl 1127.53014

[13] Obata, M. The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry, Volume 6 (1971/72), pp. 247-258 | MR 303464 | Zbl 0236.53042

[14] Schoen, R. On the conformal and CR automorphism groups, Geom. Funct. Anal., Volume 5 (1995) no. 2, pp. 464-481 | Article | EuDML 58198 | MR 1334876 | Zbl 0835.53015

[15] Schottenloher, M. A Mathematical Introduction to Conformal Field Theory, Springer-Verlag, Berlin, 1997 | MR 1473464 | Zbl 0874.17031

[16] Sharpe, R.W. Differential Geometry : Cartan’s generalization of Klein’s Erlangen Program, Springer, New York, 1997 | MR 1453120 | Zbl 0876.53001

[17] Vässälä, J. Lectures on n -dimensional quasiconformal mappings, Lecture Notes in Mathematics, 229, Springer-Verlag, Berlin-New York, 1971 | MR 454009 | Zbl 0221.30031

[18] Zeghib, A. Sur les actions affines des groupes discrets, Ann. Inst. Fourier, Volume 47 (1997), pp. 641-685 | Article | EuDML 75241 | Numdam | MR 1450429 | Zbl 0865.57038

[19] Zeghib, A. Isometry groups and geodesic foliations of Lorentz manifolds. I. Foundations of Lorentz dynamics, Geom. Funct. Anal., Volume 9 (1999) no. 4, pp. 775-822 | Article | MR 1719606 | Zbl 0946.53035

[20] Zeghib, A. Isometry groups and geodesic foliationsof Lorentz manifolds. II. Geometry of analytic Lorentz manifolds with large isometry groups, Geom. Funct. Anal., Volume 9 (1999) no. 4, pp. 823-854 | Article | MR 1719610 | Zbl 0946.53036

Cité par Sources :