Dedekind sums involving Jacobi modular forms and special values of Barnes zeta functions
Annales de l'Institut Fourier, Volume 61 (2011) no. 5, pp. 1977-1993.

In this paper we study three new shifted sums of Apostol-Dedekind-Rademacher type. The first sums are written in terms of Jacobi modular forms, and the second sums in terms of cotangent and the third sums are expressed in terms of special values of the Barnes multiple zeta functions. These sums generalize the classical Dedekind-Rademacher sums. The main aim of this paper is to state and prove the Dedekind reciprocity laws satisfied by these new sums. As an application of our Dedekind reciprocity law we show how to derive all the well-known results on Dedekind reciprocity law studied by Hall-Wilson-Zagier, Beck-Berndt-Dieter, Katayama and Nagasaka-Ota-Sekine.

Dans ce papier nous étudions trois types nouveaux de sommes shiftées de Dedekind-Apostol-Rademacher. Les premières sommes sont écrites à l’aide des formes modulaires de Jacobi et les deuxièmes sont écrites en termes de valeurs de fonctions cotangentes et les troisièmes sont exprimées à l’aide de valeurs spéciales de fonctions zêta multiples de Barnes. Le résultat principal de cet article est de montrer une loi de réciprocité de Dedekind satisfaites par ces nouvelles sommes. Nos résultats recouvrent ceux de Hall-Wilson-Zagier sur les sommes classiques de Dedekind-Rademacher, ceux de Beck-Berndt-Dieter sur les sommes cotangentes et d’autres résultats obtenus par Ota et Nagasaka sur les sommes de Dedekind, attachées aux dérivées premières de fonctions zêta de Barnes.

DOI: 10.5802/aif.2663
Classification: 11F20, 11F50, 11F66, 11F67, 11M41
Keywords: Elliptic Dedekind sums, modular forms, theta functions, ellpitic functions, Bernoulli functions, Jacobi modular forms
Mot clés : sommes de Dedekind elliptiques, formes modulaires de Jacobi, fonctions zêta de Barnes, lois de réciprocité de Dedekind.
Bayad, Abdelmejid 1; Simsek, Yilmaz 2

1 Université d’Evry Val d’Essonne Département de mathématiques Bd. F. Mitterrand, 91025 Evry Cedex (France)
2 University of Akdeniz Faculty of Arts and Science Department of Mathematics 07058 Antalya (Turkey)
@article{AIF_2011__61_5_1977_0,
     author = {Bayad, Abdelmejid and Simsek, Yilmaz},
     title = {Dedekind sums involving {Jacobi} modular forms and special values of {Barnes} zeta functions},
     journal = {Annales de l'Institut Fourier},
     pages = {1977--1993},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {61},
     number = {5},
     year = {2011},
     doi = {10.5802/aif.2663},
     zbl = {1279.11044},
     mrnumber = {2961845},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2663/}
}
TY  - JOUR
AU  - Bayad, Abdelmejid
AU  - Simsek, Yilmaz
TI  - Dedekind sums involving Jacobi modular forms and special values of Barnes zeta functions
JO  - Annales de l'Institut Fourier
PY  - 2011
SP  - 1977
EP  - 1993
VL  - 61
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2663/
DO  - 10.5802/aif.2663
LA  - en
ID  - AIF_2011__61_5_1977_0
ER  - 
%0 Journal Article
%A Bayad, Abdelmejid
%A Simsek, Yilmaz
%T Dedekind sums involving Jacobi modular forms and special values of Barnes zeta functions
%J Annales de l'Institut Fourier
%D 2011
%P 1977-1993
%V 61
%N 5
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2663/
%R 10.5802/aif.2663
%G en
%F AIF_2011__61_5_1977_0
Bayad, Abdelmejid; Simsek, Yilmaz. Dedekind sums involving Jacobi modular forms and special values of Barnes zeta functions. Annales de l'Institut Fourier, Volume 61 (2011) no. 5, pp. 1977-1993. doi : 10.5802/aif.2663. http://www.numdam.org/articles/10.5802/aif.2663/

[1] Bayad, A. Jacobi forms in two variables: Multiple elliptic Dedekind sums, The Kummer-von Staudt Clausen Congruences for elliptic Bernoulli functions and values of Hecke L-functions (Preprint)

[2] Bayad, A. Sommes de Dedekind elliptiques et formes de Jacobi, Ann. Instit. Fourier, Volume 51 Fasc. 1, (2001), pp. 29-42 | DOI | Numdam | MR | Zbl

[3] Bayad, A. Applications aux sommes elliptiques multiples d’Apostol-Dedekind-Zagier, C.R.A.S Paris, Ser. I, Volume 339 fascicule 8, Série I, (2004), p. 539-532 | MR | Zbl

[4] Bayad, A. Sommes elliptiques multiples d’Apostol-Dedekind-Zagier, C.R.A.S Paris, Ser. I, Volume 339 fascicule 7, Série I, (2004), pp. 457-462 | MR | Zbl

[5] Beck, M. Dedekind cotangent sums, Acta Arithmetica, Volume 109 (2003) no. 2, pp. 109-130 | DOI | MR | Zbl

[6] Berndt, B. C. Reciprocity theorems for Dedekind sums and generalizations, Adv. in Math., Volume 23 (1977) no. 3, pp. 285-316 | DOI | MR | Zbl

[7] Berndt, B. C.; Dieter, U. Sums involving the greatest integer function and Riemann-Stieltjes integration, J. reine angew. Math., Volume 337 (1982), pp. 208-220 | MR | Zbl

[8] Dieter, U. Cotangent sums, a further generalization of Dedekind sums, J. Number Th., Volume 18 (1984), pp. 289-305 | DOI | MR | Zbl

[9] Hall, R. R.; Wilson, J. C.; Zagier, D. Reciprocity formulae for general Dedekind-Rademacher sums, Acta Arith., Volume 73 (1995) no. 4, pp. 389-396 | MR | Zbl

[10] Katayama, K. Barne’s Double zeta function, the Dedekind Sum and Ramanujan’s Formula, Tokyo J. Math., Volume 27 (2004) no. 1, pp. 41-56 | DOI | MR | Zbl

[11] Katayama, K. Barne’s Multiple function and Apostol’s Generalized Dedekind Sum, Tokyo J. Math., Volume 27 (2004) no. 1, pp. 57-74 | DOI | MR | Zbl

[12] Nagasaka, Y.; Ota, K.; Sekine, C. Generalizations of Dedekind sums and their reciprocity laws, acta Arith, Volume 106 (2003) no. 4, pp. 355-378 | DOI | MR | Zbl

[13] Ota, K. Derivatives of Dedekind sums and their reciprocity law, Journal of Number Theory, Volume 98 (2003), pp. 280-309 | DOI | MR | Zbl

[14] Ruijsenaars, S. N. M. On Barnes’ Multiple Zeta and Gamma Functions, Advances in Mathematics, Volume 156 (2000), pp. 107-132 | DOI | MR | Zbl

[15] Sczech, R. Dedekindsummen mit elliptischen Funktionen, Invent.math, Volume 76 (1984), pp. 523-551 | DOI | MR | Zbl

[16] Weil, A. Elliptic functions according to Eisenstein and Kronecker, (Ergeb. der Math. 88), Springer-Verlag, 1976 | MR | Zbl

Cited by Sources: