This paper discusses the question whether the discrete spectrum of the Laplace-Beltrami operator is infinite or finite. The borderline-behavior of the curvatures for this problem will be completely determined.
Ce document traite de la question si le spectre discret de l’opérateur de Laplace-Beltrami est infini ou fini. La ligne de démarcation du comportement des courbures de ce problème sera complètement déterminée.
Keywords: Laplace-Beltrami operator, discrete spectrum, Ricci curvature
Mot clés : opérateur de Laplace-Beltrami, spectre discret, courbure de Ricci
@article{AIF_2011__61_4_1557_0, author = {Kumura, Hironori}, title = {The lower bound of the {Ricci} curvature that yields an infinite discrete spectrum of the {Laplacian}}, journal = {Annales de l'Institut Fourier}, pages = {1557--1572}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {4}, year = {2011}, doi = {10.5802/aif.2651}, zbl = {1252.58017}, mrnumber = {2951504}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2651/} }
TY - JOUR AU - Kumura, Hironori TI - The lower bound of the Ricci curvature that yields an infinite discrete spectrum of the Laplacian JO - Annales de l'Institut Fourier PY - 2011 SP - 1557 EP - 1572 VL - 61 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2651/ DO - 10.5802/aif.2651 LA - en ID - AIF_2011__61_4_1557_0 ER -
%0 Journal Article %A Kumura, Hironori %T The lower bound of the Ricci curvature that yields an infinite discrete spectrum of the Laplacian %J Annales de l'Institut Fourier %D 2011 %P 1557-1572 %V 61 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2651/ %R 10.5802/aif.2651 %G en %F AIF_2011__61_4_1557_0
Kumura, Hironori. The lower bound of the Ricci curvature that yields an infinite discrete spectrum of the Laplacian. Annales de l'Institut Fourier, Volume 61 (2011) no. 4, pp. 1557-1572. doi : 10.5802/aif.2651. http://www.numdam.org/articles/10.5802/aif.2651/
[1] The uncertainty principle lemma under gravity and the discrete spectrum of Schrödinger operators (arXiv:0812.4663)
[2] A relation between growth and the spectrum of the Laplacian, Math. Z., Volume 178 (1981), pp. 501-508 | DOI | MR | Zbl
[3] Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics, 115, Academic Press Inc., 1984 | MR | Zbl
[4] Eigenvalue comparison theorems and its geometric application, Math. Z, Volume 143 (1982), pp. 289-297 | DOI | MR | Zbl
[5] Methods of Mathematical Physics, Interscience Publishers, Inc.,(a division of John Wiley & Sons), New York-London, Vol. I ,1953; Vol. II, 1962 | Zbl
[6] On the essential spectrum of a complete Riemannian manifold, Topology, Volume 20 (1981), pp. 1-14 | DOI | MR | Zbl
[7] Function Theory on Manifolds Which Possess a Pole, Lecture Notes in Math. 699, Springer-Verlag, Berlin, 1979 | MR | Zbl
[8] Applications of Laplacian and Hessian comparison theorems, Adv. Stud. Pure Math., 3, Elsevier Science Ltd, Tokyo, 1982, pp. 333-386 | MR | Zbl
[9] Corrections to the classical behavior of the number of bound states of Schrödinger operators, Ann. Phys., Volume 183 (1988), pp. 122-130 | DOI | MR | Zbl
[10] Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Funktionen, Math. Ann., Volume 95 (1926), pp. 499-518 | DOI | EuDML | JFM | MR
[11] Methods of Modern Mathematical Physics, Vol. II, Academic Press, New York, 1972 | MR | Zbl
[12] Partial Differential Equations I, (Applied Math. Sci. 116), Applied Mathematical Sciences, Springer-Verlag, New York, 1996 | MR | Zbl
Cited by Sources: