Let be a germ of a reduced analytic space of pure dimension. We provide an analytic proof of the uniform Briançon-Skoda theorem for the local ring ; a result which was previously proved by Huneke by algebraic methods. For ideals with few generators we also get much sharper results.
Soit un germe d’un espace analytique réduit de dimension pure. Nous donnons une démonstration analytique du théorème de Briançon-Skoda pour l’anneau local . Ce résultat a déjà été démontré par Huneke en utilisant des méthodes algébriques. Nous obtenons également un résultat beaucoup plus fort pour les idéaux engendrés par peu d’éléments.
Keywords: Briançon-Skoda theorem, analytic space, residue current
Mot clés : théorème de Briançon-Skoda, espace analytique, courant résiduel
@article{AIF_2010__60_2_417_0, author = {Andersson, Mats and Samuelsson, H\r{a}kan and Sznajdman, Jacob}, title = {On the {Brian\c{c}on-Skoda} theorem on a singular variety}, journal = {Annales de l'Institut Fourier}, pages = {417--432}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {2}, year = {2010}, doi = {10.5802/aif.2527}, zbl = {1200.32007}, mrnumber = {2667781}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2527/} }
TY - JOUR AU - Andersson, Mats AU - Samuelsson, Håkan AU - Sznajdman, Jacob TI - On the Briançon-Skoda theorem on a singular variety JO - Annales de l'Institut Fourier PY - 2010 SP - 417 EP - 432 VL - 60 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2527/ DO - 10.5802/aif.2527 LA - en ID - AIF_2010__60_2_417_0 ER -
%0 Journal Article %A Andersson, Mats %A Samuelsson, Håkan %A Sznajdman, Jacob %T On the Briançon-Skoda theorem on a singular variety %J Annales de l'Institut Fourier %D 2010 %P 417-432 %V 60 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2527/ %R 10.5802/aif.2527 %G en %F AIF_2010__60_2_417_0
Andersson, Mats; Samuelsson, Håkan; Sznajdman, Jacob. On the Briançon-Skoda theorem on a singular variety. Annales de l'Institut Fourier, Volume 60 (2010) no. 2, pp. 417-432. doi : 10.5802/aif.2527. http://www.numdam.org/articles/10.5802/aif.2527/
[1] Coleff-Herrera currents, duality, and Noetherian operators Preprint Gothenburg (2009), available at arXiv:0902.3064
[2] A residue criterion for strong holomorphicity Ark. Mat., (to appear) available at arXiv:0711.2863
[3] Integral representation with weights. I, Math. Ann., Volume 326 (2003) no. 1, pp. 1-18 | DOI | MR | Zbl
[4] Residue currents and ideals of holomorphic functions, Bull. Sci. Math., Volume 128 (2004) no. 6, pp. 481-512 | DOI | MR | Zbl
[5] Explicit versions of the Briançon-Skoda theorem with variations, Michigan Math. J., Volume 54 (2006) no. 2, pp. 361-373 | DOI | MR | Zbl
[6] Integral representation with weights. II. Division and interpolation, Math. Z., Volume 254 (2006) no. 2, pp. 315-332 | DOI | MR | Zbl
[7] Explicit representation of membership of polynomial ideals Preprint Mittag-Leffler (2008), available at arXiv:0806.2592
[8] Koppelman formulas and the -equation on an analytic space Preprint Mittag-Leffler (2008), available at arXiv:0801.0710
[9] Decomposition of residue currents J. reine angew. Math., (to appear), available at arXiv:0710.2016
[10] Residue currents with prescribed annihilator ideals, Ann. Sci. École Norm. Sup. (4), Volume 40 (2007) no. 6, pp. 985-1007 | Numdam | MR | Zbl
[11] Residue currents and Bezout identities, Progress in Mathematics, 114, Birkhäuser Verlag, Basel, 1993 | MR | Zbl
[12] Residues and -modules, The legacy of Niels Henrik Abel, Springer, Berlin, 2004, pp. 605-651 | MR
[13] Les courants résiduels associés à une forme méromorphe, Lecture Notes in Mathematics, 633, Springer, Berlin, 1978 | MR | Zbl
[14] Commutative algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995 (With a view toward algebraic geometry) | MR | Zbl
[15] Abelian differentials on singular varieties and variations on a theorem of Lie-Griffiths, Invent. Math., Volume 135 (1999) no. 2, pp. 297-328 | DOI | MR | Zbl
[16] Uniform bounds in Noetherian rings, Invent. Math., Volume 107 (1992) no. 1, pp. 203-223 | DOI | MR | Zbl
[17] A Briançon-Skoda theorem for isolated singularities, J. Algebra, Volume 204 (1998) no. 2, pp. 656-665 | DOI | MR | Zbl
[18] On Bochner-Martinelli residue currents and their annihilator ideals, Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 6, pp. 2119-2142 | DOI | Numdam
[19] Clôture intégrale des idéaux et équisingularité, Ann. Fac. Sci. Toulouse Math. (6), Volume 17 (2008) no. 4, pp. 781-859 | DOI | Numdam | MR | Zbl
[20] Jacobian ideals and a theorem of Briançon-Skoda, Michigan Math. J., Volume 28 (1981) no. 2, pp. 199-222 | DOI | MR | Zbl
[21] Pseudorational local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michigan Math. J., Volume 28 (1981) no. 1, pp. 97-116 | DOI | MR | Zbl
[22] Residue currents of the Bochner-Martinelli type, Publ. Mat., Volume 44 (2000) no. 1, pp. 85-117 | MR | Zbl
[23] Regularizations of products of residue and principal value currents, J. Funct. Anal., Volume 239 (2006) no. 2, pp. 566-593 | DOI | MR | Zbl
[24] Riemannsche Hebbarkeitssätze für Cohomologieklassen, Math. Ann., Volume 144 (1961), pp. 345-360 | DOI | MR | Zbl
[25] Application des techniques à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup. (4), Volume 5 (1972), pp. 545-579 | Numdam | MR | Zbl
[26] Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de , C. R. Acad. Sci. Paris Sér. A, Volume 278 (1974), pp. 949-951 | MR | Zbl
[27] An elementary proof of the Briançon-Skoda theorem (Preprint Gothenburg 2008, available at arXiv:0807.0142)
[28] Residue currents of monomial ideals, Indiana Univ. Math. J., Volume 56 (2007) no. 1, pp. 365-388 | DOI | MR | Zbl
Cited by Sources: