Let be a compact subanalytic surface. This paper shows that, in a suitable sense, there are very few rational points of that do not lie on some connected semialgebraic curve contained in .
Soit une surface sous-analytique compacte. Cet article démontre qu’en un sens convenable, il y a très peu de points rationnels de qui ne se trouvent pas sur une courbe semi-algébrique connexe contenue dans .
Keywords: Subanalytic set, rational point
Mot clés : ensemble sous-analytique, point rationnel
@article{AIF_2005__55_5_1501_0, author = {Pila, Jonathan}, title = {Rational points on a subanalytic surface}, journal = {Annales de l'Institut Fourier}, pages = {1501--1516}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {5}, year = {2005}, doi = {10.5802/aif.2131}, mrnumber = {2172272}, zbl = {02210717}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2131/} }
TY - JOUR AU - Pila, Jonathan TI - Rational points on a subanalytic surface JO - Annales de l'Institut Fourier PY - 2005 SP - 1501 EP - 1516 VL - 55 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2131/ DO - 10.5802/aif.2131 LA - en ID - AIF_2005__55_5_1501_0 ER -
Pila, Jonathan. Rational points on a subanalytic surface. Annales de l'Institut Fourier, Volume 55 (2005) no. 5, pp. 1501-1516. doi : 10.5802/aif.2131. http://www.numdam.org/articles/10.5802/aif.2131/
[1] Semianalytic and subanalytic sets, Pub. Math. I.H.E.S, Volume 67 (1988), pp. 5-42 | Numdam | MR | Zbl
[2] email, 9 March (2003)
[3] The number of integral points on arcs and ovals, Duke Math. J., Volume 59 (1989), pp. 337-357 | DOI | MR | Zbl
[4] The density of rational points on curves and surfaces, Ann. Math., Volume 155 (2002), pp. 553-595 | DOI | MR | Zbl
[5] Diophantine geometry: an introduction, Graduate Texts in Mathematics, 201, Springer, New York, 2000 | MR | Zbl
[6] Über die Gitterpunkte auf konvexen Curven, Math. Z., Volume 24 (1926), pp. 500-518 | DOI | JFM | MR
[7] Number theory III: diophantine geometry, Encyclopedia of Mathematical Sciences, 60, Springer, Berlin, 1991 | MR | Zbl
[8] Geometric postulation of a smooth function and the number of rational points, Duke Math. J., Volume 63 (1991), pp. 449-463 | MR | Zbl
[9] Density of integer points on plane algebraic curves, International Mathematics Research Notices (1996), pp. 903-912 | MR | Zbl
[10] Integer points on the dilation of a subanalytic surface, Quart. J. Math., Volume 55 (2004), pp. 207-223 | DOI | MR | Zbl
[11] Note on the rational points of a pfaff curve (submitted)
[12] Integer points on curves and surfaces, Monatsh. Math., Volume 99 (1985), pp. 45-72 | DOI | MR | Zbl
[13] The number of lattice points on a convex curve, J. Number Theory, Volume 6 (1974), pp. 128-135 | DOI | MR | Zbl
[14] Diophantine properties of sets definable in -minimal structures, J. Symb. Logic, Volume 69 (2004), pp. 851-861 | DOI | MR | Zbl
Cited by Sources: