Applications of the p-adic Nevanlinna theory to functional equations
Annales de l'Institut Fourier, Tome 50 (2000) no. 3, pp. 751-766.

Soit K un corps ultramétrique complet algébriquement clos de caractéristique nulle. On applique la théorie de Nevanlinna p-adique aux équations de la forme g=Rf, où RK(x), et f,g sont des fonctions méromorphes dans K ou dans un disque ouvert, ainsi qu’à l’équation de Yoshida.

Let K be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value. We apply the p-adic Nevanlinna theory to functional equations of the form g=Rf, where RK(x), f,g are meromorphic functions in K, or in an “open disk”, g satisfying conditions on the order of its zeros and poles. In various cases we show that f and g must be constant when they are meromorphic in all K, or they must be quotients of bounded functions when they are meromorphic in an “open disk”. In particular, we have an easy way to obtain again Picard-Berkovich’s theorem for curves of genus 1 and 2. These results apply to equations f m +g n =1, when f,g are meromorphic functions, or entire functions in K or analytic functions in an “open disk”. We finally apply the method to Yoshida’s equation y m =F(y), when FK(X), and we describe the only case where solutions exist: F must be a polynomial of the form A(y-a) d where m-d divides m, and then the solutions are the functions of the form f(x)=a+λ(x-α) m m-d , with λ m-d (m m-d) m =A.

     author = {Boutabaa, Abdelbaki and Escassut, Alain},
     title = {Applications of the $p$-adic {Nevanlinna} theory to functional equations},
     journal = {Annales de l'Institut Fourier},
     pages = {751--766},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {50},
     number = {3},
     year = {2000},
     doi = {10.5802/aif.1771},
     zbl = {1063.30043},
     mrnumber = {2002a:30073},
     language = {en},
     url = {}
AU  - Boutabaa, Abdelbaki
AU  - Escassut, Alain
TI  - Applications of the $p$-adic Nevanlinna theory to functional equations
JO  - Annales de l'Institut Fourier
PY  - 2000
DA  - 2000///
SP  - 751
EP  - 766
VL  - 50
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  -
UR  -
UR  -
UR  -
DO  - 10.5802/aif.1771
LA  - en
ID  - AIF_2000__50_3_751_0
ER  - 
Boutabaa, Abdelbaki; Escassut, Alain. Applications of the $p$-adic Nevanlinna theory to functional equations. Annales de l'Institut Fourier, Tome 50 (2000) no. 3, pp. 751-766. doi : 10.5802/aif.1771.

[1] W. Berkovich, Spectral Theory and Analytic Geometry over Non-archimedean Fields, AMS Surveys and Monographs, 33 (1990). | MR 91k:32038 | Zbl 0715.14013

[2] A. Boutabaa, Théorie de Nevanlinna p-adique, Manuscripta Mathematica, 67 (1990), 251-269. | MR 91m:30039 | Zbl 0697.30047

[3] A. Boutabaa, A. Escassut, An Improvement of the p-adic Nevanlinna Theory and Application to Meromorphic Functions, Lecture Notes in Pure and Applied Mathematics n° 207 (Marcel Dekker). | MR 2000h:30065 | Zbl 0937.30028

[4] A. Boutabaa, On some p-adic functional equations, Lecture Notes in Pure and Applied Mathematics (Marcel Dekker), 192 (1997), 49-59. | MR 98g:12011 | Zbl 0942.12004

[5] A. Boutabaa, A. Escassut, and L. Haddad, On uniqueness of p-adic entire functions, Indagationes Mathematicae, 8 (1997), 145-155. | MR 99j:30051 | Zbl 0935.30029

[6] A. Boutabaa, A. Escassut, Urs and ursim for p-adic unbounded analytic functions inside a disk, (preprint).

[7] A. Boutabaa, A. Escassut, Property f— (S) = g— (S) for p-adic entire and meromorphic functions, to appear in Rendiconti del Circolo Matematico di Palermo.

[8] W. Cherry, Non-archimedean analytic curves in Abelian varieties, Math. Ann., 300 (1994), 393-404. | MR 96i:14021 | Zbl 0808.14019

[9] A. Escassut, Analytic Elements in p-adic Analysis, World Scientific Publishing Co. Pte. Ltd., Singapore, 1995. | MR 97e:46106 | Zbl 0933.30030

[10] A. Escassut, L. Haddad, and R. Vidal, Urs, ursim, and non-urs, Journal of Number Theory, 75 (1999), 133-144. | MR 99m:30093 | Zbl 01274816

[11] F. Gross, On the equation fn + gn = 1, Bull. Amer. Math. Soc., 72 (1966), 86-88. | MR 32 #2595 | Zbl 0131.13603

[12] I. Kaplansky, An Introduction to Differential Algebra, Actualités Scientifiques et Industrielles 1251, Hermann, Paris (1957). | MR 20 #177 | Zbl 0083.03301

[13] R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthiers-Villars, Paris, 1929. | JFM 55.0773.03

[14] E. Picard, Traité d'analyse II, Gauthier-Villars, Paris, 1925.

Cité par Sources :