Hörmander has characterized the surjective constant coefficient partial differential operators on the space of all real analytic functions on by a Phragmén-Lindelöf condition. Geometric implications of this condition and, for homogeneous operators, of the corresponding condition for Gevrey classes are given.
Hörmander a caractérisé les opérateurs différentiels à coefficients constants sur l’espace des fonctions analytiques réelles sur par une condition du type Phragmén-Lindelöf. On donne des conséquences géométriques de cette condition et, pour les opérateurs homogènes, de la condition analogue pour les classes de Gevrey.
@article{AIF_1995__45_1_223_0, author = {Braun, R\"udiger W.}, title = {The surjectivity of a constant coefficient homogeneous differential operator in the real analytic functions and the geometry of its symbol}, journal = {Annales de l'Institut Fourier}, pages = {223--249}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {45}, number = {1}, year = {1995}, doi = {10.5802/aif.1454}, mrnumber = {96e:35025}, zbl = {0816.35007}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1454/} }
TY - JOUR AU - Braun, Rüdiger W. TI - The surjectivity of a constant coefficient homogeneous differential operator in the real analytic functions and the geometry of its symbol JO - Annales de l'Institut Fourier PY - 1995 SP - 223 EP - 249 VL - 45 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1454/ DO - 10.5802/aif.1454 LA - en ID - AIF_1995__45_1_223_0 ER -
%0 Journal Article %A Braun, Rüdiger W. %T The surjectivity of a constant coefficient homogeneous differential operator in the real analytic functions and the geometry of its symbol %J Annales de l'Institut Fourier %D 1995 %P 223-249 %V 45 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1454/ %R 10.5802/aif.1454 %G en %F AIF_1995__45_1_223_0
Braun, Rüdiger W. The surjectivity of a constant coefficient homogeneous differential operator in the real analytic functions and the geometry of its symbol. Annales de l'Institut Fourier, Volume 45 (1995) no. 1, pp. 223-249. doi : 10.5802/aif.1454. http://www.numdam.org/articles/10.5802/aif.1454/
[1] Propagation of analyticity of solutions of partial differential equations with constant coefficients, Ark. Mat., 8 (1971), 277-302. | MR | Zbl
,[2] Géométrie algébrique réelle, Ergebnisse Math. Grenzgebiete 3. Folge 12, Springer, Berlin 1987. | MR | Zbl
, , ,[3] Hörmander's Phragmén-Lindelöf principle and irreducible singularities of codimension 1, Boll. Un. Mat. Ital., (7), 6-A (1992), 339-348. | MR | Zbl
,[4] Surjektivität partieller Differentialoperatoren auf Roumieu-Klassen, Habilitationsschrift, Düsseldorf, 1993.
,[5] Ultradifferentiable functions and Fourier analysis, Result. Math., 17 (1990), 206-237. | MR | Zbl
, , ,[6] Applications of the projective limit functor to convolution and partial differential equations, in Advances in the Theory of Fréchet-Spaces, T. Terzioǧlu (Ed.), Istanbul 1987, NATO ASI Series C, Vol. 287, Kluwer, Dordrecht 1989, 29-46. | MR | Zbl
, , ,[7] Characterization of the linear partial differential operators with constant coefficients which are surjective on non-quasianalytic classes of Roumieu type on ℝN, Math. Nachrichten, 168 (1994), 19-54. | MR | Zbl
, , ,[8] Solutions in Gevrey spaces of partial differential equations with constant coefficients, in Analytic Solutions of Partial Differential Equations, L. Cattabriga (Ed.), Trento 1981, Astérisque, 89/90 (1981), 129-151. | MR | Zbl
,[9] On the surjectivity of differential polynomials on Gevrey spaces, in Atti del Convegno : “Linear Partial and Pseudodifferential Operators” Rendiconti del Seminario Matematico, Fascicolo Speziale. Torino, Università e Politecnico, 1983, 81-89. | MR | Zbl
,[10] Una dimostrazione diretta dell'esistenza di soluzioni analitiche nel piano reale di equazioni a derivate parziali a coefficienti costanti, Boll. Un. Mat. Ital., (4) 4 (1971), 1015-1027.
, ,[11] On the existence of real analytic solutions of partial differential equations with constant coefficients, Invent. Math., 21 (1973), 151-183. | MR | Zbl
,[12] The Analysis of Linear Partial Differential Operators II, Grundlehren 257, Springer, Berlin, 1983. | MR | Zbl
,[13] An Introduction to Complex Analysis in Several Variables, North Holland, Amsterdam, 1990. | Zbl
,[14] Characterization of the linear partial differential operators with constant coefficients that admit a continuous linear right inverse, Ann. Inst. Fourier, 40-3 (1990), 619-655. | Numdam | MR | Zbl
, , ,[15] Continuous linear right inverses for partial differential operators with constant coefficients and Phragmén-Lindelöf conditions, in “Functional Analysis”, K.D. Bierstedt, A. Pietsch, W. Ruess, D. Vogt (Eds.), Marcel Dekker, New York 1993, 357-389. | Zbl
, , ,[16] Phragmén-Lindelöf principles on algebraic varieties, J. Amer. Math. Soc., to appear. | Zbl
, , ,[17] Introduction to the Theory of Analytic Spaces, LNM 25, Springer, Berlin, 1966. | MR | Zbl
,[18] Eindeutige analytische Funktionen, Grundlehren 46, Springer, Berlin, 1974. | MR | Zbl
,[19] A criterion for splitness of differential complexes with constant coefficients, in Geometric and Algebraic Aspects in Several Complex Variables, C.A. Berenstein, D.C. Struppa (Eds.), EditEl 1991, 265-291. | MR | Zbl
,[20] Non-surjectivity of the Cauchy-Riemann operator on the space of the analytic functions on ℝN, Boll. Un. Mat. Ital., (4) 7 (1973), 12-28. | MR | Zbl
,[21] Complex Analytic Varieties, Addison-Wesley, Reading (Mass.), 1972. | MR | Zbl
,[22] An application of the fundamental principle of Ehrenpreis to the existence of global Gevrey solutions of linear partial differential equations, Boll. Un. Mat. Ital., (6) 5-B (1986), 361-392. | MR | Zbl
,Cited by Sources: