The domino-shuffling algorithm [EKLP92a, EKLP92b, Pro03] can be seen as a stochastic process describing the irreversible growth of a -dimensional discrete interface [CT19, Zha18]. Its stationary speed of growth depends on the average interface slope , as well as on the edge weights , that are assumed to be periodic in space. We show that this growth model belongs to the Anisotropic KPZ class [Ton18, Wol91]: one has and the height fluctuations grow at most logarithmically in time. Moreover, we prove that is discontinuous at each of the (finitely many) smooth (or “gaseous”) slopes ; at these slopes, fluctuations do not diverge as time grows. For a special case of spatially periodic weights, analogous results have been recently proven [CT19] via an explicit computation of . In the general case, such a computation is out of reach; instead, our proof goes through a relation between the speed of growth and the limit shape of domino tilings of the Aztec diamond.
L’algorithme de mélange de dominos (“domino shuffling algorithm”) [EKLP92a, EKLP92b, Pro03] peut être vu comme un processus stochastique qui décrit la croissance irréversible d’une interface discrète (2 + 1)-dimensionnelle [CT19, Zha18]. Sa vitesse stationnaire de croissance dépend de la pente moyenne de l’interface, aussi bien que des poids des arêtes. On suppose que ces poids sont périodiques dans l’espace. Nous montrons que ce processus de croissance appartient à la classe KPZ anisotropique [Ton18, Wol91] : on a et les fluctuations de hauteur croissent au plus en logarithme du temps. De plus, nous montrons que est discontinu à chacune des pentes « gazeuses » (il y en a un nombre fini). En correspondance avec ces pentes, les fluctuations ne divergent pas avec le temps. Pour un cas spécial de poids de périodicité , des résultats analogues ont été montrés récemment [CT19] grâce à un calcul explicite de . Dans le cas général, un tel calcul n’est pas faisable ; notre preuve passe plutôt par une relation entre la vitesse de croissance et la forme limite des pavages par dominos du diamant Aztèque.
Accepted:
Published online:
Mots-clés : random tilings, stochastic interface growth, anisotropic KPZ
@article{AHL_2021__4__1005_0, author = {Chhita, Sunil and Toninelli, Fabio}, title = {The domino shuffling algorithm and {Anisotropic} {KPZ} stochastic growth}, journal = {Annales Henri Lebesgue}, pages = {1005--1034}, publisher = {\'ENS Rennes}, volume = {4}, year = {2021}, doi = {10.5802/ahl.95}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ahl.95/} }
TY - JOUR AU - Chhita, Sunil AU - Toninelli, Fabio TI - The domino shuffling algorithm and Anisotropic KPZ stochastic growth JO - Annales Henri Lebesgue PY - 2021 SP - 1005 EP - 1034 VL - 4 PB - ÉNS Rennes UR - http://www.numdam.org/articles/10.5802/ahl.95/ DO - 10.5802/ahl.95 LA - en ID - AHL_2021__4__1005_0 ER -
Chhita, Sunil; Toninelli, Fabio. The domino shuffling algorithm and Anisotropic KPZ stochastic growth. Annales Henri Lebesgue, Volume 4 (2021), pp. 1005-1034. doi : 10.5802/ahl.95. http://www.numdam.org/articles/10.5802/ahl.95/
[ADPZ04] Dimer Models and Conformal Structures (2004) (https://arxiv.org/abs/2004.02599)
[BF14] Anisotropic Growth of Random Surfaces in Dimensions, Commun. Math. Phys., Volume 325 (2014) no. 2, pp. 603-684 | DOI | MR | Zbl
[BS95] Fractal Concepts in Surface Growth, Cambridge University Press, 1995 | Zbl
[BT18] Two-dimensional anisotropic KPZ growth and limit shapes, J. Stat. Mech. Theory Exp. (2018) no. 8, 083205 | DOI | MR | Zbl
[CCM20] Renormalizing the Kardar–Parisi–Zhang equation in in weak disorder, J. Stat. Phys., Volume 179 (2020) no. 3, pp. 713-728 | DOI | MR | Zbl
[CD20] Constructing a solution of the -dimensional KPZ equation, Ann. Probab., Volume 48 (2020) no. 2, pp. 1014-1055 | DOI | MR | Zbl
[CFT19] Speed and fluctuations for some driven dimer models, Ann. Inst. Henri Poincaré D, Comb. Phys. Interact. (AIHPD), Volume 6 (2019) no. 4, pp. 489-532 | DOI | MR | Zbl
[CKP01] A variational principle for domino tilings, J. Am. Math. Soc., Volume 14 (2001) no. 2, pp. 297-346 | DOI | MR | Zbl
[CLP98] The shape of a typical boxed plane partition, New York J. Math., Volume 4 (1998), pp. 137-165 | MR | Zbl
[CSZ20] The two-dimensional KPZ equation in the entire subcritical regime, Ann. Probab., Volume 48 (2020) no. 3, pp. 1086-1127 | DOI | MR | Zbl
[CT19] A -dimensional anisotropic KPZ growth model with a smooth phase, Commun. Math. Phys., Volume 367 (2019) no. 2, pp. 483-516 | DOI | MR | Zbl
[DGRZ20] Fluctuations of the solutions to the KPZ equation in dimensions three and higher, Probab. Theory Relat. Fields, Volume 176 (2020) no. 3-4, pp. 1217-1258 | DOI | MR | Zbl
[EKLP92a] Alternating-sign matrices and domino tilings. I, J. Algebr. Comb., Volume 1 (1992) no. 2, pp. 111-132 | DOI | MR | Zbl
[EKLP92b] Alternating-sign matrices and domino tilings. II, J. Algebr. Comb., Volume 1 (1992) no. 3, pp. 219-234 | DOI | MR | Zbl
[Foc15] Inverse spectral problem for GK integrable system (2015) (https://arxiv.org/abs/1503.00289)
[GK13] Dimers and cluster integrable systems, Ann. Sci. Éc. Norm. Supér., Volume 46 (2013) no. 5, pp. 747-813 | DOI | Numdam | MR | Zbl
[GW95] Stationary states of crystal growth in three dimensions, J. Stat. Phys., Volume 81 (1995) no. 3-4, pp. 999-1012 | Zbl
[HH12] -Dimensional Directed Polymer in a Random Medium: Scaling Phenomena and Universal Distributions, Phys. Rev. Lett., Volume 109 (2012) no. 17, 170602 | DOI
[Ken09] Lectures on dimers, Statistical mechanics. Papers based on the presentations at the IAS/PCMI summer conference, Park City, UT, USA, July 1–21, 2007 (Scheffield, Scott, ed.) (IAS/Park City Mathematics Series), American Mathematical Society; Institute for Advanced Study, 2009, pp. 191-230 | Zbl
[KO06] Planar dimers and Harnack curves, Duke Math. J., Volume 131 (2006) no. 3, pp. 499-524 | DOI | MR | Zbl
[KO07] Limit shapes and the complex Burgers equation, Acta Math., Volume 199 (2007) no. 2, pp. 263-302 | DOI | MR | Zbl
[KOS06] Dimers and amoebae, Ann. Math., Volume 163 (2006) no. 3, pp. 1019-1056 | DOI | MR | Zbl
[KPZ86] Dynamic scaling of growing interfaces, Phys. Rev. Lett., Volume 56 (1986) no. 9, pp. 889-892 | DOI | Zbl
[Kuc17] Limit shapes for the dimer model (2017) (https://arxiv.org/abs/1712.08396)
[LT19] Hydrodynamic limit and viscosity solutions for a two-dimensional growth process in the anisotropic KPZ class, Commun. Pure Appl. Math., Volume 72 (2019) no. 3, pp. 620-666 | DOI | MR | Zbl
[Mor66] Multiple integrals in the calculus of variations, Grundlehren der Mathematischen Wissenschaften, 130, Springer, 1966 | MR | Zbl
[MU18] The scaling limit of the KPZ equation in space dimension 3 and higher, J. Stat. Phys., Volume 171 (2018) no. 4, pp. 543-598 | DOI | MR | Zbl
[NR62] A theorem on maps with non-negative Jacobians, Mich. Math. J., Volume 9 (1962) no. 2, pp. 173-176 | MR | Zbl
[Pro03] Generalized Domino–Shuffling, Theor. Comput. Sci., Volume 303 (2003) no. 2-3, pp. 267-301 | DOI | MR | Zbl
[PS97] An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime, J. Stat. Phys., Volume 88 (1997) no. 5-6, pp. 999-1012 | DOI | MR | Zbl
[PT80] The theory of two-dimensional incommensurate crystals, Sov. Phys., JETP, Volume 51 (1980) no. 1, pp. 134-148 | MR
[S10] Minimizers of convex functionals arising in random surfaces, Duke Math. J., Volume 151 (2010) no. 3, pp. 487-532 | DOI | MR | Zbl
[TFW92] Kinetic surface roughening. II. Hypercube stacking models, Phys. Rev. A, Volume 45 (1992) no. 10, pp. 7162-7169 | DOI
[Ton17] A -dimensional growth process with explicit stationary measures, Ann. Probab., Volume 45 (2017) no. 5, pp. 2899-2940 | DOI | MR | Zbl
[Ton18] (2+ 1)-dimensional interface dynamics: mixing time, hydrodynamic limit and Anisotropic KPZ growth, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. III. Invited lectures (Sirakov, Boyan et al., eds.), World Scientific; Sociedade Brasileira de Matemática, 2018, pp. 2733-2758 | Zbl
[Wol91] Kinetic roughening of vicinal surfaces, Phys. Rev. Lett., Volume 67 (1991), pp. 1783-1786 | DOI
[Zha18] Domino shuffling height process and its hydrodynamic limit (2018) (https://arxiv.org/abs/1808.07409)
Cited by Sources: