We classify pairs consisting of a complex K3 surface and a finite group such that the subgroup consisting of symplectic automorphisms is among the maximal symplectic ones as classified by Mukai.
Nous classifions les paires formées d’une surface K3 complexe et d’un groupe fini pour lesquelles le sous-groupe des automorphismes symplectiques appartient aux sous-groupes symplectiques maximaux classifiés par Mukai.
Revised:
Accepted:
Published online:
Mots-clés : K3 surface, automorphism, Mathieu group
@article{AHL_2021__4__785_0, author = {Brandhorst, Simon and Hashimoto, Kenji}, title = {Extensions of maximal symplectic actions on {K3} surfaces}, journal = {Annales Henri Lebesgue}, pages = {785--809}, publisher = {\'ENS Rennes}, volume = {4}, year = {2021}, doi = {10.5802/ahl.88}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ahl.88/} }
TY - JOUR AU - Brandhorst, Simon AU - Hashimoto, Kenji TI - Extensions of maximal symplectic actions on K3 surfaces JO - Annales Henri Lebesgue PY - 2021 SP - 785 EP - 809 VL - 4 PB - ÉNS Rennes UR - http://www.numdam.org/articles/10.5802/ahl.88/ DO - 10.5802/ahl.88 LA - en ID - AHL_2021__4__785_0 ER -
Brandhorst, Simon; Hashimoto, Kenji. Extensions of maximal symplectic actions on K3 surfaces. Annales Henri Lebesgue, Volume 4 (2021), pp. 785-809. doi : 10.5802/ahl.88. http://www.numdam.org/articles/10.5802/ahl.88/
[AC91] An algebraic classification of the three-dimensional crystallographic groups, Adv. Appl. Math., Volume 12 (1991) no. 1, pp. 1-21 | DOI | MR | Zbl
[AST11] surfaces with non-symplectic automorphisms of prime order. With an appendix by Shigeyuki Kondō, Math. Z., Volume 268 (2011) no. 1-2, pp. 507-533 | DOI | MR | Zbl
[BEO02] A millennium project: constructing small groups, Int. J. Algebra Comput., Volume 12 (2002) no. 5, pp. 623-644 | DOI | MR | Zbl
[BH19] Extensions of maximal symplectic actions on K3 surfaces (2019) (https://arxiv.org/abs/1910.05952)
[BHPVdV04] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 4, Springer, 2004 | MR | Zbl
[BR75] On the Torelli problem for kählerian K3 surfaces, Ann. Sci. Éc. Norm. Supér., Volume 8 (1975) no. 2, pp. 235-273 | DOI | MR | Zbl
[BS] Private communication
[BS19] K3 surfaces with maximal finite automorphism groups containing (2019) (https://arxiv.org/abs/1910.05955)
[CS99] Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften, 290, Springer, 1999 | MR | Zbl
[Dev19] SageMath, the Sage Mathematics Software System, 2019 (version 8.9), https://www.sagemath.org
[DGPS19] Singular 4-1-2 — A computer algebra system for polynomial computations, http://www.singular.uni-kl.de, 2019
[Elk] Private communication
[Fra11] Classification of -surfaces with involution and maximal symplectic symmetry, Math. Ann., Volume 350 (2011) no. 4, pp. 757-791 | DOI | MR | Zbl
[Gro19] GAP – Groups, Algorithms, and Programming,, 2019 (version 4.10.2, https://www.gap-system.org)
[Has11] Period map of a certain family with an -action, J. Reine Angew. Math., Volume 652 (2011), pp. 1-65 (With an appendix by Tomohide Terasoma) | DOI | MR | Zbl
[Has12] Finite symplectic actions on the lattice, Nagoya Math. J., Volume 206 (2012), pp. 99-153 | DOI | MR | Zbl
[HM16] The 290 fixed-point sublattices of the Leech lattice, J. Algebra, Volume 448 (2016), pp. 618-637 | DOI | MR | Zbl
[Huy16] Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, 158, Cambridge University Press, 2016 | DOI | MR | Zbl
[KK01] The automorphism groups of Kummer surfaces associated with the product of two elliptic curves, Trans. Am. Math. Soc., Volume 353 (2001) no. 4, pp. 1469-1487 | DOI | MR | Zbl
[Kon86] Enriques surfaces with finite automorphism groups, Jpn. J. Math., New Ser., Volume 12 (1986) no. 2, pp. 191-282 | DOI | MR | Zbl
[Kon98] Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of surfaces. With an appendix by Mukai, Shigeru, Duke Math. J., Volume 92 (1998) no. 3, pp. 593-603 | Zbl
[Kon99] The maximum order of finite groups of automorphisms of surfaces, Am. J. Math., Volume 121 (1999) no. 6, pp. 1245-1252 | DOI | MR | Zbl
[Kon06] Maximal subgroups of the Mathieu group and symplectic automorphisms of supersingular surfaces, Int. Math. Res. Not. (2006), 71517 | DOI | MR | Zbl
[Kon18] A survey of finite groups of symplectic automorphisms of surfaces, J. Phys. A, Math. Theor., Volume 51 (2018) no. 5, 053003 | DOI | MR | Zbl
[KOZ07] Extensions of the alternating group of degree 6 in the geometry of surfaces, Eur. J. Comb., Volume 28 (2007) no. 2, pp. 549-558 | DOI | MR | Zbl
[MO14] Finite groups of automorphisms of Enriques surfaces and the Mathieu group (2014) (https://arxiv.org/abs/1410.7535)
[Muk88] Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math., Volume 94 (1988) no. 1, pp. 183-221 | DOI | MR | Zbl
[Nik79a] Finite groups of automorphisms of Kählerian surfaces of type , Tr. Mosk. Mat. O.-va, Volume 38 (1979), pp. 75-137 | MR | Zbl
[Nik79b] Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 43 (1979) no. 1, p. 111-177, 238 | MR
[Oha] Private communication
[OZ02] The simple group of order 168 and K3 surfaces, Complex geometry. Collection of papers dedicated to Hans Grauert on the occasion of his 70th birthday, Springer, 2002, pp. 165-184 | Zbl
[PAR18] PARI/GP version 2.11.1, 2018 (available from http://pari.math.u-bordeaux.fr/)
[PS97] Computing isometries of lattices, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 327-334 | DOI | MR | Zbl
[PTvdV92] The Hasse zeta function of a K3-surface related to the number of words of weight 5 in the Melas codes, J. Reine Angew. Math., Volume 432 (1992), pp. 151-176 | MR | Zbl
[PŠŠ71] Torelli’s theorem for algebraic surfaces of type , Izv. Akad. Nauk SSSR, Ser. Mat., Volume 35 (1971), pp. 530-572 | MR
[Shi16] The automorphism groups of certain singular surfaces and an Enriques surface, K3 surfaces and their moduli, Basel: Birkhäuser/Springer, 2016, pp. 297-343 | DOI | Zbl
[Shi20] The elliptic modular surface of level 4 and its reduction modulo 3, Ann. Mat. Pura Appl., Volume 199 (2020) no. 4, pp. 1457-1489 | DOI | MR | Zbl
[Smi07] Picard-Fuchs Differential Equations for Families of K3 Surfaces (2007) (https://arxiv.org/abs/0705.3658)
[Tod80] Applications of the Kähler–Einstein–Calabi–Yau metric to moduli of surfaces, Invent. Math., Volume 61 (1980) no. 3, pp. 251-265 | DOI | MR | Zbl
[Uji13] The automorphism group of the singular surface of discriminant 7, Comment. Math. Univ. St. Pauli, Volume 62 (2013) no. 1, pp. 11-29 | MR | Zbl
Cited by Sources: