Multi-ended Markovian triangulations and robust convergence to the UIPT
Annales Henri Lebesgue, Volume 5 (2022), pp. 1235-1259.

We classify completely the infinite, planar triangulations satisfying a weak spatial Markov property, without assuming one-endedness nor finiteness of vertex degrees. In particular, the Uniform Infinite Planar Triangulation (UIPT) is the only such triangulation with average degree 6. As a consequence, we prove that the convergence of uniform triangulations of the sphere to the UIPT is robust, in the sense that it is preserved under various perturbations of the uniform measure. As another application, we obtain large deviation estimates for the number of occurencies of a pattern in uniform triangulations.

Nous classifions complètement les triangulations planaires infinies vérifiant une propriété de Markov faible, sans supposer que la triangulation n’a qu’un seul bout, ni que les degrés des sommets sont finis. En particulier, l’UIPT (Triangulation Infinie Uniforme du Plan) est la seule de ces triangulations dont le degré moyen vaut 6. Nous en déduisons que la convergence des triangulations uniformes de la sphère vers l’UIPT est robuste, au sens où elle est préservée par diverses perturbations de la mesure uniforme. Enfin, nous obtenons des estimées de grandes déviations sur le nombre d’occurences d’une petite sous-triangulation dans les triangulations uniformes.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/ahl.149
Classification: 60C05
Keywords: Random planar maps, UIPT, spatial Markov property, pattern occurences
Budzinski, Thomas 1

1 UMPA, ENS de Lyon 46 Allée d’Italie 69007 Lyon (France)
@article{AHL_2022__5__1235_0,
     author = {Budzinski, Thomas},
     title = {Multi-ended {Markovian} triangulations and robust convergence to the {UIPT}},
     journal = {Annales Henri Lebesgue},
     pages = {1235--1259},
     publisher = {\'ENS Rennes},
     volume = {5},
     year = {2022},
     doi = {10.5802/ahl.149},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ahl.149/}
}
TY  - JOUR
AU  - Budzinski, Thomas
TI  - Multi-ended Markovian triangulations and robust convergence to the UIPT
JO  - Annales Henri Lebesgue
PY  - 2022
SP  - 1235
EP  - 1259
VL  - 5
PB  - ÉNS Rennes
UR  - http://www.numdam.org/articles/10.5802/ahl.149/
DO  - 10.5802/ahl.149
LA  - en
ID  - AHL_2022__5__1235_0
ER  - 
%0 Journal Article
%A Budzinski, Thomas
%T Multi-ended Markovian triangulations and robust convergence to the UIPT
%J Annales Henri Lebesgue
%D 2022
%P 1235-1259
%V 5
%I ÉNS Rennes
%U http://www.numdam.org/articles/10.5802/ahl.149/
%R 10.5802/ahl.149
%G en
%F AHL_2022__5__1235_0
Budzinski, Thomas. Multi-ended Markovian triangulations and robust convergence to the UIPT. Annales Henri Lebesgue, Volume 5 (2022), pp. 1235-1259. doi : 10.5802/ahl.149. http://www.numdam.org/articles/10.5802/ahl.149/

[AMS20] Albenque, Marie; Ménard, Laurent; Schaeffer, Gilles Local convergence of large random triangulations coupled with an Ising model, Trans. Am. Math. Soc., Volume 374 (2020), p. 1 | DOI | MR | Zbl

[Ang03] Angel, Omer Growth and percolation on the uniform infinite planar triangulation, Geom. Funct. Anal., Volume 13 (2003) no. 5, pp. 935-974 | DOI | MR | Zbl

[AR15] Angel, Omer; Ray, Gourab Classification of half planar maps, Ann. Probab., Volume 43 (2015) no. 3, pp. 1315-1349 | DOI | MR | Zbl

[AS03] Angel, Omer; Schramm, Oded Uniform infinite planar triangulations, Commun. Math. Phys., Volume 241 (2003) no. 2-3, pp. 191-213 | DOI | MR | Zbl

[BL21] Budzinski, Thomas; Louf, Baptiste Local limits of uniform triangulations in high genus, Invent. Math., Volume 223 (2021), pp. 1-47 | DOI | MR | Zbl

[BL22] Budzinski, Thomas; Louf, Baptiste Local limits of bipartite maps with prescribed face degrees in high genus, Ann. Probab., Volume 50 (2022) no. 3, pp. 1059-1126 | DOI | MR | Zbl

[BS14] Björnberg, Jakob E.; Stefansson, Sigurdur Orn Recurrence of bipartite planar maps, Electron. J. Probab., Volume 19 (2014) no. 31, pp. 1-40 | MR | Zbl

[Bud18] Budzinski, Thomas The hyperbolic Brownian plane, Probab. Theory Relat. Fields, Volume 171 (2018) no. 1, pp. 503-541 | DOI | MR | Zbl

[CD06] Chassaing, Philippe; Durhuus, Bergifinnur Local limit of labeled trees and expected volume growth in a random quadrangulation, Ann. Probab., Volume 34 (2006) no. 3, pp. 879-917 | MR | Zbl

[Che] Chen, Linxiao personal communication

[CKM] Curien, Nicolas; Kortchemski, Igor; Marzouk, Cyril The mesoscopic geometry of sparse random maps (to appear in Journal de l’École Polytechnique – Mathématiques)

[CT20a] Chen, Linxiao; Turunen, Joonas Critical Ising Model on Random Triangulations of the Disk: Enumeration and Local Limits, Commun. Math. Phys., Volume 374 (2020) no. 3, pp. 1577-1643 | DOI | MR | Zbl

[CT20b] Chen, Linxiao; Turunen, Joonas Ising model on random triangulations of the disk: phase transition (2020) (https://arxiv.org/abs/2003.09343v1)

[Cur16] Curien, Nicolas Planar stochastic hyperbolic triangulations, Probab. Theory Relat. Fields, Volume 165 (2016) no. 3-4, pp. 509-540 | DOI | MR | Zbl

[Cur19] Curien, Nicolas Peeling random planar maps, Saint-Flour lecture notes (2019)

[CV81] Cori, Robert; Vauquelin, Bernard Planar maps are well labeled trees, Can. J. Math., Volume 33 (1981) no. 5, pp. 1023-1042 | DOI | MR | Zbl

[DS20] Drmota, Michael; Stufler, Benedikt Pattern occurrences in random planar maps, Stat. Probab. Lett., Volume 158 (2020), 108666 | DOI | MR | Zbl

[GJ08] Goulden, Ian P.; Jackson, David M. The KP hierarchy, branched covers, and triangulations, Adv. Math., Volume 219 (2008) no. 3, pp. 932-951 | DOI | MR | Zbl

[HS33] Hildebrandt, Theophil H.; Schoenberg, Isaac J. On Linear Functional Operations and the Moment Problem for a Finite Interval in One or Several Dimensions, Ann. Math., Volume 34 (1933) no. 2, pp. 317-328 | DOI | MR | Zbl

[Kri07] Krikun, Maxim Explicit enumeration of triangulations with multiple boundaries, Electron. J. Comb., Volume 14 (2007) no. 1, R61 | MR | Zbl

[MM07] Marckert, Jean-François; Miermont, Grégory Invariance principles for random bipartite planar maps, Ann. Probab., Volume 35 (2007) no. 5, pp. 1642-1705 | MR | Zbl

[Ste18] Stephenson, Robin Local convergence of large critical multi-type Galton–Watson trees and applications to random maps, J. Theor. Probab., Volume 31 (2018) no. 1, pp. 159-205 | DOI | MR | Zbl

[Tur20] Turunen, Joonas Interfaces in the vertex-decorated Ising model on random triangulations of the disk (2020) (https://arxiv.org/abs/2003.11012)

[Tut62] Tutte, William T. A census of planar triangulations, Can. J. Math., Volume 14 (1962), pp. 21-38 | DOI | MR | Zbl

Cited by Sources: