Nous étudions l’exposant diophantien d’un point d’une hypersurface quadratique. Nous montrons notamment un analogue du théorème de Thue–Siegel–Roth, c’est-à-dire une formule pour l’exposant diophantien d’un point algébrique, et un analogue du résultat de Kleinbock et Margulis sur l’extrémalité des sous-variétés non dégénérées de l’espace affine.
We study the Diophantine exponent of a point on a quadric hypersurface. We show in particular an analogue of the Thue–Siegel–Roth theorem, that is to say a formula for the Diophantine exponent of an algebraic point, and an analogue of the result of Kleinbock and Margulis on the extremality of non-degenerate analytic manifolds in the of affine space.
Révisé le :
Accepté le :
Publié le :
Mots-clés : espaces de réseaux, points rationnels, groupes orthogonaux, théorème du sous-espace
de Saxcé, Nicolas 1
CC-BY 4.0
@article{AHL_2022__5__1009_0,
author = {de Saxc\'e, Nicolas},
title = {Approximation diophantienne sur les quadriques},
journal = {Annales Henri Lebesgue},
pages = {1009--1034},
year = {2022},
publisher = {\'ENS Rennes},
volume = {5},
doi = {10.5802/ahl.142},
language = {fr},
url = {https://www.numdam.org/articles/10.5802/ahl.142/}
}
de Saxcé, Nicolas. Approximation diophantienne sur les quadriques. Annales Henri Lebesgue, Tome 5 (2022), pp. 1009-1034. doi: 10.5802/ahl.142
[BCR98] Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 36, Springer, 1998 (translated from the 1987 French original, Revised by the authors) | Zbl | MR | DOI
[BdS21] A subspace theorem for manifolds (2021) (à paraître dans JEMS, https://arxiv.org/abs/2101.04055)
[Dan85] Divergent trajectories of flows on homogeneous spaces and Diophantine approximation, J. Reine Angew. Math., Volume 359 (1985), pp. 55-89 | Zbl | MR | DOI
[Dru05] Diophantine approximation on rational quadrics, Math. Ann., Volume 333 (2005) no. 2, pp. 405-470 | MR | DOI | Zbl
[dS] Non divergence via the successive minima (à paraître dans Groups, Geometry and Dynamics)
[FKMS22] Intrinsic Diophantine approximation on quadric hypersurfaces, J. Eur. Math. Soc., Volume 24 (2022) no. 3, pp. 1045-1101 | MR | Zbl | DOI
[Kle08] An extension of quantitative nondivergence and applications to Diophantine exponents, Trans. Am. Math. Soc., Volume 360 (2008) no. 12, pp. 6497-6523 | Zbl | MR | DOI
[Kle10] An “almost all versus no” dichotomy in homogeneous dynamics and Diophantine approximation, Geom. Dedicata, Volume 149 (2010), pp. 205-218 | Zbl | MR | DOI
[KLW04] On fractal measures and Diophantine approximation, Sel. Math., New Ser., Volume 10 (2004) no. 4, pp. 479-523 | DOI | Zbl | MR
[KM98] Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. Math., Volume 148 (1998) no. 1, pp. 339-360 | Zbl | MR | DOI
[KM15] Rational approximation on spheres, Isr. J. Math., Volume 209 (2015) no. 1, pp. 293-322 | Zbl | MR | DOI
[Mar71] The action of unipotent groups in a lattice space, Mat. Sb., N. Ser., Volume 86(128) (1971), pp. 552-556 | MR
[Rot60] Rational approximations to algebraic numbers, Proc. Internat. Congress Math. 1958, Cambridge University Press (1960), pp. 203-210 | Zbl
[Sch80] Diophantine approximation, Lecture Notes in Mathematics, 785, Springer, 1980 | Zbl | MR
Cité par Sources :





