Sharp phase transition for Gaussian percolation in all dimensions
[Transition de phase abrupte pour des percolations gaussiennes en toute dimension]
Annales Henri Lebesgue, Tome 5 (2022), pp. 987-1008.

On considère les courbes de niveau de champs gaussiens continus sur d au-dessus d’un certain niveau -, ce qui définit un modèle de percolation lorsque varie. Nous supposons que le noyau de covariance satisfait certaines conditions de régularité, de symétrie et de positivité ainsi qu’une décroissance polynomiale d’exposant supérieur à d (cela inclut notamment le champ de Bargmann–Fock). Sous ces hypothèses, nous prouvons que le modèle subit une transition de phase abrupte autour de son point critique c . Plus précisément, nous montrons que les probabilités de connexion décroissent exponentiellement pour < c et que la percolation se produit dans des dalles 2D suffisamment épaisses pour > c . Ceci étenddles résultats récemment obtenus en dimension d=2 à des dimensions arbitraires par des techniques complètement différentes. Le résultat découle d’une comparaison globale avec une version tronquée (c’est-à-dire avec une plage de dépendance finie) et discrétisée (c’est-à-dire définie sur le réseau ε d ) du modèle, qui peut présenter un intérêt indépendant. La démonstration de cette comparaison repose sur un schéma d’interpolation qui intègre les corrélations à longue portée et infinitésimales du modèle tout en les compensant par une légère modification du paramètre .

We consider the level-sets of continuous Gaussian fields on d above a certain level -, which defines a percolation model as varies. We assume that the covariance kernel satisfies certain regularity, symmetry and positivity conditions as well as a polynomial decay with exponent greater than d (in particular, this includes the Bargmann–Fock field). Under these assumptions, we prove that the model undergoes a sharp phase transition around its critical point c . More precisely, we show that connection probabilities decay exponentially for < c and percolation occurs in sufficiently thick 2D slabs for > c . This extends results recently obtained in dimension d=2 to arbitrary dimensions through completely different techniques. The result follows from a global comparison with a truncated (i.e. with finite range of dependence) and discretized (i.e. defined on the lattice ε d ) version of the model, which may be of independent interest. The proof of this comparison relies on an interpolation scheme that integrates out the long-range and infinitesimal correlations of the model while compensating them with a slight change in the parameter .

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.141
Classification : 82B43, 60K35, 60G15, 60G60
Mots clés : percolation, sharpness, phase transition, Gaussian fields
Severo, Franco 1

1 ETH Zürich Rämistrasse 101 8092 Zürich (Switzerland)
@article{AHL_2022__5__987_0,
     author = {Severo, Franco},
     title = {Sharp phase transition for {Gaussian} percolation in all dimensions},
     journal = {Annales Henri Lebesgue},
     pages = {987--1008},
     publisher = {\'ENS Rennes},
     volume = {5},
     year = {2022},
     doi = {10.5802/ahl.141},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ahl.141/}
}
TY  - JOUR
AU  - Severo, Franco
TI  - Sharp phase transition for Gaussian percolation in all dimensions
JO  - Annales Henri Lebesgue
PY  - 2022
SP  - 987
EP  - 1008
VL  - 5
PB  - ÉNS Rennes
UR  - http://www.numdam.org/articles/10.5802/ahl.141/
DO  - 10.5802/ahl.141
LA  - en
ID  - AHL_2022__5__987_0
ER  - 
%0 Journal Article
%A Severo, Franco
%T Sharp phase transition for Gaussian percolation in all dimensions
%J Annales Henri Lebesgue
%D 2022
%P 987-1008
%V 5
%I ÉNS Rennes
%U http://www.numdam.org/articles/10.5802/ahl.141/
%R 10.5802/ahl.141
%G en
%F AHL_2022__5__987_0
Severo, Franco. Sharp phase transition for Gaussian percolation in all dimensions. Annales Henri Lebesgue, Tome 5 (2022), pp. 987-1008. doi : 10.5802/ahl.141. http://www.numdam.org/articles/10.5802/ahl.141/

[AB87] Aizenman, Michael; Barsky, David J. Sharpness of the phase transition in percolation models, Commun. Math. Phys., Volume 108 (1987) no. 3, pp. 489-526 | DOI | MR | Zbl

[Ana15] Anantharaman, Nalini Topologie des hypersurfaces nodales de fonctions gaussiennes, Séminaire Bourbaki Vol. 2015/2016 (Astérisque), Volume 390, Société Mathématique de France, 2015, pp. 369-408 | Zbl

[Bar04] Barlow, Martin T. Random walks on supercritical percolation clusters, Ann. Probab., Volume 32 (2004) no. 4, pp. 3024-3084 | MR | Zbl

[BG17] Beffara, Vincent; Gayet, Damien Percolation of random nodal lines, Publ. Math., Inst. Hautes Étud. Sci., Volume 126 (2017) no. 1, pp. 131-176 | DOI | MR | Zbl

[BM18] Beliaev, Dmitri B.; Muirhead, Stephen Discretisation schemes for level sets of planar gaussian fields, Commun. Math. Phys., Volume 359 (2018) no. 3, pp. 869-913 | DOI | MR | Zbl

[BS02] Bogomolny, Eugene; Schmit, Charles Percolation model for nodal domains of chaotic wave functions, Phys. Rev. Lett., Volume 88 (2002) no. 11, 114102, 4 pages | DOI

[BS07] Bogomolny, Eugene; Schmit, Charles Random wavefunctions and percolation, J. Phys. A, Math. Theor., Volume 40 (2007) no. 47, pp. 14033-14043 | DOI | MR | Zbl

[BT17] Benjamini, Itai; Tassion, Vincent Homogenization via sprinklin, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 53 (2017) no. 2, pp. 997-1005 | DOI | Zbl

[Cer00] Cerf, Raphaël Large deviations for three dimensional supercritical percolation, Astérisque, 267, Société Mathématique de France, 2000 | Numdam | Zbl

[CS19] Canzani, Yaiza; Sarnak, Peter Topology and nesting of the zero set components of monochromatic random waves, Commun. Pure Appl. Math., Volume 72 (2019) no. 2, pp. 343-374 | DOI | MR | Zbl

[DCGRS20] Duminil-Copin, Hugo; Goswami, Subhajit; Rodriguez, Pierre-François; Severo, Franco Equality of critical parameters for percolation of Gaussian free field level-sets (2020) (https://arxiv.org/abs/2002.07735)

[DCRT19] Duminil-Copin, Hugo; Raoufi, Aran; Tassion, Vincent Sharp phase transition for the random-cluster and potts models via decision trees, Ann. Math., Volume 189 (2019) no. 1, pp. 75-99 | MR | Zbl

[DM21] Dewan, Vivek; Muirhead, Stephen Upper bounds on the one-arm exponent for dependent percolation models (2021) (https://arxiv.org/abs/2102.12123)

[DPR21] Drewitz, Alexander; Prévost, Alexis; Rodriguez, Pierre-François Critical exponents for a percolation model on transient graph (2021) (https://arxiv.org/abs/2101.05801)

[GM90] Grimmett, Geoffrey R.; Marstrand, John M. The supercritical phase of percolation is well behaved, Proc. R. Soc. Lond., Ser. A, Volume 430 (1990) no. 1879, pp. 439-457 | MR | Zbl

[Gri99] Grimmett, Geoffrey R. Percolation, Grundlehren der Mathematischen Wissenschaften, 321, Springer, 1999 | DOI | Zbl

[GRS21] Goswami, Subhajit; Rodriguez, Pierre-François; Severo, Franco On the radius of Gaussian free field excursion clusters (2021) (https://arxiv.org/abs/2101.02200)

[Jan97] Janson, Svante Gaussian Hilbert Spaces, Cambridge Tracts in Mathematics, 129, Cambridge University Press, 1997 | DOI | Zbl

[Kes80] Kesten, Harry The critical probability of bond percolation on the square lattice equals 1 2, Commun. Math. Phys., Volume 74 (1980) no. 1, pp. 41-59 | DOI | MR | Zbl

[Men86] Menshikov, Mikhail V. Coincidence of critical points in percolation problems, Dokl. Akad. Nauk SSSR, Volume 288 (1986) no. 6, pp. 1308-1311 | MR | Zbl

[MRVKS20] Muirhead, Stephen; Rivera, Alejandro; Vanneuville, Hugo; Köhler-Schindler, Laurin The phase transition for planar gaussian percolation models without FKG (2020) (https://arxiv.org/abs/2010.11770)

[MS83a] Molchanov, Stanislav A.; Stepanov, A. K. Percolation in random fields. I, Teor. Mat. Fiz., Volume 55 (1983) no. 2, pp. 246-256 | MR

[MS83b] Molchanov, Stanislav A.; Stepanov, A. K. Percolation in random fields. II, Teor. Mat. Fiz., Volume 55 (1983) no. 3, pp. 592-599 | DOI | MR

[MS86] Molchanov, Stanislav A.; Stepanov, A. K. Percolation in random fields. III, Teor. Mat. Fiz., Volume 67 (1986) no. 2, pp. 434-439 | DOI | MR

[MV20] Muirhead, Stephen; Vanneuville, Hugo The sharp phase transition for level set percolation of smooth planar Gaussian fields, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 56 (2020) no. 2, pp. 1358-1390 | MR | Zbl

[Nit18] Nitzschner, Maximilian Disconnection by level sets of the discrete Gaussian free field and entropic repulsion, Electron. J. Probab., Volume 23 (2018) no. 1, 105 | MR | Zbl

[NS09] Nazarov, Fedor; Sodin, Mikhail On the number of nodal domains of random spherical harmonics, Am. J. Math., Volume 131 (2009) no. 5, pp. 1337-1357 | DOI | MR | Zbl

[NS20] Nitzschner, Maximilian; Sznitman, Alain-Sol Solidification of porous interfaces and disconnection, J. Eur. Math. Soc., Volume 22 (2020) no. 8, pp. 2629-2672 | DOI | MR | Zbl

[PR15] Popov, Serguei; Ráth, Balázs On decoupling inequalities and percolation of excursion sets of the Gaussian free field, J. Stat. Phys., Volume 159 (2015) no. 2, pp. 312-320 | DOI | MR | Zbl

[Riv19] Rivera, Alejandro Talagrand’s inequality in planar gaussian field percolation (2019) (https://arxiv.org/abs/1905.13317)

[RV20] Rivera, Alejandro; Vanneuville, Hugo The critical threshold for Bargmann–Fock percolation, Ann. Henri Lebesgue, Volume 3 (2020), pp. 169-215 | DOI | MR | Zbl

[Sap17] Sapozhnikov, Artem Random walks on infinite percolation clusters in models with long-range correlations, Ann. Probab., Volume 45 (2017) no. 3, pp. 1842-1898 | MR | Zbl

[Sar17] Sarnak, Peter Topologies of the zero sets of random real projective hyper-surfaces and of monochromatic waves, 2017 (Talk delivered at Random geometries/ Random topologies conference, slides available at https://math.ethz.ch/fim/activities/conferences/past-conferences/2017/random-geometries-topologies.html)

[SW19] Sarnak, Peter; Wigman, Igor Topologies of nodal sets of random band-limited functions, Commun. Pure Appl. Math., Volume 72 (2019) no. 2, pp. 275-342 | DOI | MR | Zbl

[Szn15] Sznitman, Alain-Sol Disconnection and level-set percolation for the Gaussian free field, J. Math. Soc. Japan, Volume 67 (2015) no. 4, pp. 1801-1843 | MR | Zbl

Cité par Sources :