We prove a scattering result near certain steady states for a Hartree equation for a random field. This equation describes the evolution of a system of infinitely many particles. It is an analogous formulation of the usual Hartree equation for density matrices. We treat dimensions and , extending our previous result. We reach a large class of interaction potentials, which includes the nonlinear Schrödinger equation. This result has an incidence in the density matrices framework. The proof relies on dispersive techniques used for the study of scattering for the nonlinear Schrödinger equation, and on the use of explicit low frequency cancellations as done by Lewin and Sabin. To relate to density matrices, we use Strichartz estimates for orthonormal systems from Frank and Sabin, and Leibniz rules for integral operators.
Nous montrons un résultat de diffusion au voisinage de certains états d’équilibre pour une équation d’Hartree pour un champ aléatoire. Cette équation décrit l’évolution d’un système composé d’une infinité de particules. Elle est analogue à la formulation usuelle de l’équation d’Hartree pour des matrices de densité. Nous traitons le cas des dimensions deux et trois, étendant ainsi notre résultat précédent. Nous considérons une large classe de potentiels d’interaction, qui inclue l’équation de Schrödinger non linéaire. Notre résultat en implique un analogue dans le cadre des matrices de densité. La preuve repose sur des techniques dispersives utilisées pour la diffusion pour les équations de Schrödinger non linéaires, et sur des annulations dans les basses fréquences similaires à celles de Lewin et Sabin. Pour relier notre résultat au matrices de densité, nous utilisons des estimations de Strichartz pour des systèmes orthonormaux de Frank et Sabin, et des règles de Leibniz pour des opérateurs intégraux.
Revised:
Accepted:
Published online:
Mots-clés : Hartree equation, nonlinear Schrödinger equation, density matrices, random fields, stability, scattering
@article{AHL_2022__5__429_0, author = {Collot, Charles and de Suzzoni, Anne-Sophie}, title = {Stability of steady states for {Hartree} and {Schr\"odinger} equations for infinitely many particles}, journal = {Annales Henri Lebesgue}, pages = {429--490}, publisher = {\'ENS Rennes}, volume = {5}, year = {2022}, doi = {10.5802/ahl.127}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ahl.127/} }
TY - JOUR AU - Collot, Charles AU - de Suzzoni, Anne-Sophie TI - Stability of steady states for Hartree and Schrödinger equations for infinitely many particles JO - Annales Henri Lebesgue PY - 2022 SP - 429 EP - 490 VL - 5 PB - ÉNS Rennes UR - http://www.numdam.org/articles/10.5802/ahl.127/ DO - 10.5802/ahl.127 LA - en ID - AHL_2022__5__429_0 ER -
%0 Journal Article %A Collot, Charles %A de Suzzoni, Anne-Sophie %T Stability of steady states for Hartree and Schrödinger equations for infinitely many particles %J Annales Henri Lebesgue %D 2022 %P 429-490 %V 5 %I ÉNS Rennes %U http://www.numdam.org/articles/10.5802/ahl.127/ %R 10.5802/ahl.127 %G en %F AHL_2022__5__429_0
Collot, Charles; de Suzzoni, Anne-Sophie. Stability of steady states for Hartree and Schrödinger equations for infinitely many particles. Annales Henri Lebesgue, Volume 5 (2022), pp. 429-490. doi : 10.5802/ahl.127. http://www.numdam.org/articles/10.5802/ahl.127/
[BEG + 02] Derivation of the Schrödinger–Poisson equation from the quantum N-body problem, C. R. Math. Acad. Sci. Paris, Volume 334 (2002) no. 6, pp. 515-520 | DOI | Zbl
[BGGM03] Mean field dynamics of fermions and the time-dependent Hartree–Fock equation, J. Math. Pures Appl., Volume 82 (2003) no. 6, pp. 665-683 | DOI | MR | Zbl
[BJP + 16] Mean-Field Evolution of Fermionic Mixed States, Commun. Pure Appl. Math., Volume 69 (2016) no. 12, pp. 2250-2303 | DOI | MR | Zbl
[BPF74] An existence proof for the Hartree–Fock time-dependent problem with bounded two-body interaction, Commun. Math. Phys., Volume 37 (1974) no. 3, pp. 183-191 | DOI | MR | Zbl
[BPF76] On the Hartree–Fock time-dependent problem, Commun. Math. Phys., Volume 49 (1976) no. 1, pp. 25-33 | DOI | MR
[BPS14] Mean–Field Evolution of Fermionic Systems, Commun. Math. Phys., Volume 331 (2014) no. 3, pp. 1087-1131 | DOI | MR | Zbl
[CdS20] Stability of equilibria for a Hartree equation for random fields, J. Math. Pures Appl., Volume 137 (2020), pp. 70-100 | DOI | MR | Zbl
[Cha76] The time-dependent Hartree–Fock equations with Coulomb two-body interaction, Commun. Math. Phys., Volume 46 (1976) no. 2, pp. 99-104 | DOI | MR | Zbl
[CHP17] Global well-posedness of the NLS system for infinitely many fermions, Arch. Ration. Mech. Anal., Volume 224 (2017) no. 1, pp. 91-123 | DOI | MR | Zbl
[CHP18] On the scattering problem for infinitely many fermions in dimensions at positive temperature, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 2, pp. 393-416 | DOI | MR | Zbl
[CK01] Maximal functions associated to filtrations, J. Funct. Anal., Volume 179 (2001) no. 2, pp. 409-425 | DOI | MR | Zbl
[EESY04] Nonlinear Hartree equation as the mean field limit of weakly coupled fermions, J. Math. Pures Appl., Volume 83 (2004) no. 10, pp. 1241-1273 | DOI | MR | Zbl
[FK11] A microscopic derivation of the time-dependent Hartree–Fock equation with Coulomb two-body interaction, J. Stat. Phys., Volume 145 (2011) no. 1, pp. 23-50 | DOI | MR | Zbl
[FLLS14] Strichartz inequality for orthonormal functions, J. Eur. Math. Soc., Volume 16 (2014) no. 7, pp. 1507-1526 | DOI | MR | Zbl
[FS17] Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates, Am. J. Math., Volume 139 (2017) no. 6, pp. 1649-1691 | DOI | MR | Zbl
[GHN18] Scattering for the 3D Gross–Pitaevskii equation, Commun. Math. Phys., Volume 359 (2018) no. 1, pp. 265-295 | MR | Zbl
[GNT06] Scattering for the Gross–Pitaevskii equation, Math. Res. Lett., Volume 13 (2006) no. 2, pp. 273-285 | DOI | MR | Zbl
[GNT07] Global dispersive solutions for the Gross–Pitaevskii equation in two and three dimensions, Ann. Henri Poincaré, Volume 8 (2007) no. 7, pp. 1303-1331 | DOI | MR | Zbl
[GNT09] Scattering theory for the Gross–Pitaevskii equation in three dimensions, Commun. Contemp. Math., Volume 11 (2009) no. 4, pp. 657-707 | DOI | MR | Zbl
[GV05] Quantum theory of the electron liquid, Cambridge University Press, 2005 | DOI
[HLS05] Existence of a stable polarized vacuum in the Bogoliubov–Dirac–Fock approximation, Commun. Math. Phys., Volume 257 (2005) no. 3, pp. 515-562 | DOI | MR | Zbl
[Lin54] On the properties of a gas of charged particles, Mat. Fys. Medd. K. Dan. Vidensk. Selsk., Volume 28 (1954) no. 8, p. 1--58 | MR | Zbl
[LS14] The Hartree equation for infinitely many particles, II: Dispersion and scattering in 2D, Anal. PDE, Volume 7 (2014) no. 6, pp. 1339-1363 | DOI | MR | Zbl
[LS15] The Hartree equation for infinitely many particles, I: Well-posedness theory, Commun. Math. Phys., Volume 334 (2015) no. 1, pp. 117-170 | DOI | MR | Zbl
[LS20] The Hartree and Vlasov equations at positive density, Commun. Partial Differ. Equations, Volume 45 (2020) no. 12, pp. 1702-1754 | DOI | MR | Zbl
[Mih11] Lindhard function of a d-dimensional Fermi gas (2011) (https://arxiv.org/abs/1111.5337)
[PS21] Long-time behaviour of time-dependent density functional theory, Arch. Ration. Mech. Anal., Volume 241 (2021) no. 1, pp. 447-473 | DOI | MR | Zbl
[S15] An equation on random variables and systems of fermions (2015) (https://arxiv.org/abs/1507.06180)
[SC18] Un résultat de diffusion pour l’équation de Hartree autour de solutions non localisées, Sémin. Laurent Schwartz, EDP Appl., Volume 2017-2018 (2018), 14 | DOI | Numdam | Zbl
[Tao06] Nonlinear dispersive equations. Local and global analysis, CBMS Regional Conference Series in Mathematics, American Mathematical Society, 2006 no. 106 | Zbl
[Zag92] The Cauchy problem for Hartree–Fock time-dependent equations, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 56 (1992) no. 4, pp. 357-374 | Numdam | MR | Zbl
Cited by Sources: