Poisson structures whose Poisson diffeomorphism group is not locally path-connected
Annales Henri Lebesgue, Volume 4 (2021), pp. 1521-1529.

We build examples of Poisson structure whose Poisson diffeomorphism group is not locally path-connected.

Nous construisons des exemples de structures de Poisson dont le groupe de difféomorphismes de Poisson n’est pas localement connexe par arcs.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/ahl.108
Classification: 53D17, 58D05, 57S05
Mots-clés : Poisson manifold, Poisson diffeomorphisms
MărcuȚ, Ioan 1

1 Radboud University Nijmegen, 6500 GL Nijmegen, (The Netherlands)
@article{AHL_2021__4__1521_0,
     author = {M\u{a}rcuȚ, Ioan},
     title = {Poisson structures whose {Poisson} diffeomorphism group is not locally path-connected},
     journal = {Annales Henri Lebesgue},
     pages = {1521--1529},
     publisher = {\'ENS Rennes},
     volume = {4},
     year = {2021},
     doi = {10.5802/ahl.108},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ahl.108/}
}
TY  - JOUR
AU  - MărcuȚ, Ioan
TI  - Poisson structures whose Poisson diffeomorphism group is not locally path-connected
JO  - Annales Henri Lebesgue
PY  - 2021
SP  - 1521
EP  - 1529
VL  - 4
PB  - ÉNS Rennes
UR  - http://www.numdam.org/articles/10.5802/ahl.108/
DO  - 10.5802/ahl.108
LA  - en
ID  - AHL_2021__4__1521_0
ER  - 
%0 Journal Article
%A MărcuȚ, Ioan
%T Poisson structures whose Poisson diffeomorphism group is not locally path-connected
%J Annales Henri Lebesgue
%D 2021
%P 1521-1529
%V 4
%I ÉNS Rennes
%U http://www.numdam.org/articles/10.5802/ahl.108/
%R 10.5802/ahl.108
%G en
%F AHL_2021__4__1521_0
MărcuȚ, Ioan. Poisson structures whose Poisson diffeomorphism group is not locally path-connected. Annales Henri Lebesgue, Volume 4 (2021), pp. 1521-1529. doi : 10.5802/ahl.108. http://www.numdam.org/articles/10.5802/ahl.108/

[Ban98] Banyaga, Augustin On Poisson Diffeomorphisms, Analysis on infinite dimensional Lie groups and algebras (Heyer, H.; Marion, J., eds.), World Scientific, 1998, pp. 1-8 | Zbl

[Ham82] Hamilton, Richard S. The inverse function theorem of Nash and Moser, Bull. Am. Math. Soc., Volume 7 (1982) no. 1, pp. 65-222 | DOI | MR | Zbl

[KM97] Kriegl, Andreas; Michor, Peter W. The Convenient Setting of Global Analysis, Mathematical Surveys and Monographs, 53, American Mathematical Society, 1997 | DOI | Zbl

[Mil84] Milnor, John W. Remarks on infinite-dimensional Lie groups, Relativity, groups and topology, II (Les Houches, 1983), North-Holland, 1984, pp. 1007-1057 | Zbl

[Ryb01] Rybicki, Tomasz On foliated, Poisson and Hamiltonian diffeomorphisms, Diff. Geom. Appl., Volume 15 (2001) no. 1, pp. 33-46 | DOI | MR | Zbl

[SW15] Schmeding, Alexander; Wockel, Christoph The Lie group of bisections of a Lie groupoid, Ann. Global Anal. Geom., Volume 48 (2015) no. 1, pp. 87-123 | DOI | MR | Zbl

[Wei71] Weinstein, Alan Symplectic manifolds and their lagrangian submanifolds, Adv. Math., Volume 6 (1971), pp. 329-346 | DOI | MR | Zbl

[Xu97] Xu, Ping Flux homomorphism on symplectic groupoids, Math. Z., Volume 226 (1997) no. 4, pp. 575-597 | MR | Zbl

Cited by Sources: