Soit
On démontre que si
où
pour tout compact
Si
En dimension
Let
We show that if
where
for every compact set
If
In one-dimensional setting these results are due to J. Müller and A. Yavrian [5].
@article{AFST_2011_6_20_S2_189_0, author = {Siciak, J\'ozef}, title = {Sets in ${\mathbb{C}}^N$ with vanishing global extremal function and polynomial approximation}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {189--209}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 20}, number = {S2}, year = {2011}, doi = {10.5802/afst.1312}, zbl = {1229.32003}, mrnumber = {2858174}, language = {en}, url = {https://www.numdam.org/articles/10.5802/afst.1312/} }
TY - JOUR AU - Siciak, Józef TI - Sets in ${\mathbb{C}}^N$ with vanishing global extremal function and polynomial approximation JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2011 SP - 189 EP - 209 VL - 20 IS - S2 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - https://www.numdam.org/articles/10.5802/afst.1312/ DO - 10.5802/afst.1312 LA - en ID - AFST_2011_6_20_S2_189_0 ER -
%0 Journal Article %A Siciak, Józef %T Sets in ${\mathbb{C}}^N$ with vanishing global extremal function and polynomial approximation %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2011 %P 189-209 %V 20 %N S2 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U https://www.numdam.org/articles/10.5802/afst.1312/ %R 10.5802/afst.1312 %G en %F AFST_2011_6_20_S2_189_0
Siciak, Józef. Sets in ${\mathbb{C}}^N$ with vanishing global extremal function and polynomial approximation. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Numéro Spécial : Actes du colloque Analyse Complexe et Applications en l’honneur de Nguyen Than Van, Tome 20 (2011) no. S2, pp. 189-209. doi : 10.5802/afst.1312. https://www.numdam.org/articles/10.5802/afst.1312/
[1] Błocki (Z.).— Equilibrium measure of a product subset of
[2] Cegrell (U.), Kołodziej (S.) and Levenberg (N.).— Two problems on potential theory for unbounded sets, p. 265-276, Math. Scand., 83 (1998). | MR | Zbl
[3] Hayman (W. K.).— Subharmonic Functions, Vol. 2 Academic Press (1989). | MR | Zbl
[4] Klimek (M.).— Pluripotential Theory Oxford Univ. Press (1991). | MR | Zbl
[5] Müller (J.) and Yavria (A.).— On polynomial sequences with restricted growth near infinity, Bull. London Math. Soc., 34, p. 189-199 (2002). | MR | Zbl
[6] Siciak (J.).— Extremal plurisubharmonic functions in
[7] Siciak (J.).— Extremal plurisubharmonic functions and capacities in
[8] BTaylor (B.A.).— An estimate for an extremal plurisubharmonic function in
[9] Truong Tuyen Trung.— Sets non-thin at
Cité par Sources :