On étudie les singularités obtenues en contractant le diviseur maximal des surfaces (non kählerienne) qui contiennent des coquilles sphériques globales. Ces singularités sont de genre 1 ou 2, peuvent être
We study singularities obtained by the contraction of the maximal divisor in compact (non-kählerian) surfaces which contain global spherical shells. These singularities are of genus 1 or 2, may be
@article{AFST_2011_6_20_1_15_0, author = {Dloussky, Georges}, title = {Quadratic forms and singularities of genus one or two}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {15--69}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 20}, number = {1}, year = {2011}, doi = {10.5802/afst.1285}, mrnumber = {2829832}, language = {en}, url = {https://www.numdam.org/articles/10.5802/afst.1285/} }
TY - JOUR AU - Dloussky, Georges TI - Quadratic forms and singularities of genus one or two JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2011 SP - 15 EP - 69 VL - 20 IS - 1 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - https://www.numdam.org/articles/10.5802/afst.1285/ DO - 10.5802/afst.1285 LA - en ID - AFST_2011_6_20_1_15_0 ER -
%0 Journal Article %A Dloussky, Georges %T Quadratic forms and singularities of genus one or two %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2011 %P 15-69 %V 20 %N 1 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U https://www.numdam.org/articles/10.5802/afst.1285/ %R 10.5802/afst.1285 %G en %F AFST_2011_6_20_1_15_0
Dloussky, Georges. Quadratic forms and singularities of genus one or two. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 20 (2011) no. 1, pp. 15-69. doi : 10.5802/afst.1285. https://www.numdam.org/articles/10.5802/afst.1285/
[1] Barth (W.), Hulek (K.), Peters (C.), and Van de Ven (A.).— Compact Complex Surfaces, Springer, Heidelberg, Second Edition (2004). | MR | Zbl
[2] Demailly (J.P.).— Complex Analytic and Differential Geometry (1997). http://www-fourier.ujf-grenoble.fr/~demailly/books.html.
[3] Dloussky (G.).— Structure des surfaces de Kato. Mémoire de la S.M.F 112.
[4] Dloussky (G.).— Sur la classification des germes d’applications holomorphes contractantes. Math. Ann. 280, p. 649-661 (1988). | MR | Zbl
[5] Dloussky (G.).— Une construction élémentaire des surfaces d’Inoue-Hirzebruch. Math. Ann. 280, p. 663-682 (1988). | MR | Zbl
[6] Dloussky (G.).— On surfaces of class VII
[7] Dloussky (G.), Oeljeklaus (K.).— Vector fields and foliations on compact surfaces of class VII
[8] Dloussky (G.), Oeljeklaus (K.).— Surfaces de la classe VII
[9] Dloussky (G.), Oeljeklaus (K.), Toma (M.).— Class VII
[10] Enoki (I.).— Surfaces of class VII
[11] Favre (Ch.).— Classification of
[12] Favre (Ch.).— Dynamique des applications rationnelles. Thèse pour le grade de Docteur en Sciences. Université de Paris XI Orsay (2000). http://tel.archives-ouvertes.fr/tel-00003577/fr/
[13] Hirzebruch (F.).— Hilbert modular surfaces. L’enseignement Math. 19, p. 183-281 (1973). | MR | Zbl
[14] Inoue (M.).— New surfaces with no meromorphic functions II. Complex Analysis and Alg. Geom. p. 91-106. Iwanami Shoten Pb. (1977). | MR | Zbl
[15] Karras (U.).— Deformations of cusps singularities. Proc. of Symp. in pure Math. 30, p. 37-44, AMS, Providence (1977). | MR | Zbl
[16] Kato (Ma.).— Compact complex manifolds containing “global spherical shells” I Proc. of the Int. Symp. Alg. Geometry, Kyoto (1977) Iwanami Shoten Publ. | MR | Zbl
[17] Kodaira (K.).— On the structure of compact complex analytic surfaces I, II. Am. J. of Math. vol.86, p. 751-798 (1964); vol.88, p. 682-721 (1966). | MR | Zbl
[18] Laufer (H.).— On minimally elliptic singularities. Amer. J. of Math. 99, p. 1257-1295, (1977). | MR | Zbl
[19] Looijenga (E.) & Wahl (J.).— Quadratic functions and smoothing surface singularities. Topology 25, p. 261-291 (1986). | MR | Zbl
[20] Mérindol (J.Y.).— Surfaces normales dont le faisceau dualisant est trivial. C.R.A.S. 293, p. 417-420 (1981). | MR | Zbl
[21] Nakamura (I.).— On surfaces of class
[22] Nakamura (I.).— On surfaces of class
[23] Nakamura (I.).— On surfaces of class
[24] Nakamura (I.).— On the equations
[25] Nakamura (I.).— Inoue-Hirzebruch surfaces and a duality of hyperbolic unimodular singularities I. Math. Ann. 252, p. 221-235 (1980). | EuDML | MR | Zbl
[26] Oeljeklaus (K.), Toma (M.).— Logarithmic moduli spaces for surfaces of class VII, Math. Ann. 341, p. 323-345 (2008). | MR | Zbl
[27] Pinkham (H.).— Singularités rationnelles de surfaces. Appendice. Séminaire sur les singularités des surfaces. Lecture Notes 777. Springer-Verlag (1980). | MR | Zbl
[28] Ribenboim (R.).— Polynomials whose values are powers. J. für die reine und ang. Math. 268/269, p. 34-40 (1974). | EuDML | MR | Zbl
[29] Riemenschneider (O.).— Familien komplexer Räume mit streng pseudokonvexer spezieller Faser. Comment. Math. Helvetici 39(51) p. 547-565 (1976). | EuDML | MR | Zbl
[30] Sakai (F.).— Enriques classification of normal Gorenstein surfaces. Am. J. of Math. 104, p. 1233-1241 (1981). | MR | Zbl
[31] Serre (J.P.).— Cours d’arithmétique Presses Universitaires de France (1970). | MR | Zbl
[32] Teleman (A.).— Projectively flat surfaces and Bogomolov’s theorem on class
- First Chern class and birational germs of Kato surfaces, Bollettino dell'Unione Matematica Italiana, Volume 12 (2019) no. 1-2, p. 239 | DOI:10.1007/s40574-018-0182-0
- Special birational structures on non-Kählerian complex surfaces, Journal de Mathématiques Pures et Appliquées, Volume 106 (2016) no. 1, p. 76 | DOI:10.1016/j.matpur.2016.02.002
- Numerically anticanonical divisors on Kato surfaces, Journal of Geometry and Physics, Volume 91 (2015), p. 117 | DOI:10.1016/j.geomphys.2015.01.001
Cité par 3 documents. Sources : Crossref