Les concepts de « semi-anneau » et d’« hypersurface tropicale » sont étendus au cas des groupes ordonnés quelconques. Ensuite, nous definissons la « tropicalisation » d’un polynôme à coefficients dans un corps valué. Après une étude détaillée de l’opérateur de tropicalisation, nous donnons une généralisation du théorème de Kapranov aux corps algébriquement clos munis d’une valuation à valeurs dans un groupe ordonné.
The concepts of tropical semiring and tropical hypersurface, are extended to the case of an arbitrary ordered group. Then, we define the tropicalization of a polynomial with coefficients in a Krull-valued field. After a close study of the properties of the operator “tropicalization" we conclude with an extension of Kapranov’s theorem to algebraically closed fields together with a valuation over an ordered group.
@article{AFST_2010_6_19_3-4_525_0, author = {Aroca, Fuensanta}, title = {Krull-Tropical {Hypersurfaces}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {525--538}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {3-4}, year = {2010}, doi = {10.5802/afst.1255}, mrnumber = {2790807}, zbl = {1223.14069}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1255/} }
TY - JOUR AU - Aroca, Fuensanta TI - Krull-Tropical Hypersurfaces JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 DA - 2010/// SP - 525 EP - 538 VL - Ser. 6, 19 IS - 3-4 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1255/ UR - https://www.ams.org/mathscinet-getitem?mr=2790807 UR - https://zbmath.org/?q=an%3A1223.14069 UR - https://doi.org/10.5802/afst.1255 DO - 10.5802/afst.1255 LA - en ID - AFST_2010_6_19_3-4_525_0 ER -
Aroca, Fuensanta. Krull-Tropical Hypersurfaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 19 (2010) no. 3-4, pp. 525-538. doi : 10.5802/afst.1255. http://www.numdam.org/articles/10.5802/afst.1255/
[1] Aroca (F.).— Tropical geometry for fields with a krull valuation: First defiintions and a small result. Boletin de la SMM, 3a Serie Volumen 16 Numero 1 (2010).
[2] Einsiedler (M.), Kapranov (M.), and Lind (D.).— Non-Archimedean amoebas and tropical varieties. J. Reine Angew. Math., 601:139-157 (2006). arXiv:math.AG/0408311v2. | MR 2289207 | Zbl 1115.14051
[3] Eisenbud (D.).— Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, (1995). With a view toward algebraic geometry. | MR 1322960 | Zbl 0819.13001
[4] Gathmann (A.).— Tropical algebraic geometry. Jahresber. Deutsch. Math.-Verein., 108(1):3-32 (2006). arXiv:math.AG/0601322v1". | MR 2219706 | Zbl 1109.14038
[5] Itenberg (I.), Mikhalkin (G.), and Shustin (E.).— Tropical algebraic geometry, volume 35 of Oberwolfach Seminars. Birkhäuser Verlag, Basel (2007). | MR 2292729 | Zbl 1162.14300
[6] Katz (E.).— A tropical toolkit. Expositiones Mathematicae, 27(1):1-36 (2009). arXiv:math/0610878. | MR 2503041 | Zbl 1193.14004
[7] Krull (W.).— Allgemeine bewertungstheorie. J. Reine Angew. Math., 167:160-197 (1932). | Zbl 0004.09802
[8] Ribenboim (P.).— The theory of classical valuations. Springer Monographs in Mathematics. Springer-Verlag, New York (1999). | MR 1677964 | Zbl 0957.12005
[9] Richter-Gebert (J.), Sturmfels (B.), and Theobald (T.).— First steps in tropical geometry. In Idempotent mathematics and mathematical physics, volume 377 of Contemp. Math., pages 289-317. Amer. Math. Soc., Providence, RI, (2005). arXiv:math.AG/0306366. | MR 2149011 | Zbl 1093.14080
[10] Shafarevich (I. R.).— Basic algebraic geometry. 1. Springer-Verlag, Berlin, second edition, (1994). Varieties in projective space, Translated from the 1988 Russian edition and with notes by Miles Reid. | MR 1328833 | Zbl 0362.14001
[11] Spivakovsky (M.).— Valuations in function fields of surfaces. Amer. J. Math., 112(1):107-156 (1990). | MR 1037606 | Zbl 0716.13003
[12] Zariski (O.) and Samuel (P.).— Commutative algebra. Vol. II. Springer-Verlag, New York, (1975). Reprint of the 1960 edition, Graduate Texts in Mathematics, Vol. 29. | MR 389876 | Zbl 0313.13001
Cité par Sources :