Discrete complex analysis – the medial graph approach
Actes des rencontres du CIRM, Tome 3 (2013) no. 1, pp. 159-169.

We discuss a new formulation of the linear theory of discrete complex analysis on planar quad-graphs based on their medial graphs. It generalizes the theory on rhombic quad-graphs developed by Duffin, Mercat, Kenyon, Chelkak and Smirnov and follows the approach on general quad-graphs proposed by Mercat. We provide discrete counterparts of the most fundamental objects in complex analysis such as holomorphic functions, differential forms, derivatives, and the Laplacian. Also, we discuss discrete versions of important fundamental theorems such as Green’s identities and Cauchy’s integral formulae. For the first time, Green’s first identity and Cauchy’s integral formula for the derivative of a holomorphic function are discretized.

Publié le :
DOI : 10.5802/acirm.65
Classification : 39A12, 30G25
Mots clés : Discrete complex analysis, quad-graphs, medial graph, Green’s identities, Cauchy’s integral formulae
Bobenko, Alexander I. 1 ; Günther, Felix 2

1 Institut für Mathematik MA 8-4 Technische Universität Berlin Straße des 17. Juni 136 10623 BERLIN GERMANY
2 Institut für Mathematik MA 8-3 Technische Universität Berlin Straße des 17. Juni 136 10623 BERLIN GERMANY
@article{ACIRM_2013__3_1_159_0,
     author = {Bobenko, Alexander I. and G\"unther, Felix},
     title = {Discrete complex analysis {\textendash} the medial graph approach},
     journal = {Actes des rencontres du CIRM},
     pages = {159--169},
     publisher = {CIRM},
     volume = {3},
     number = {1},
     year = {2013},
     doi = {10.5802/acirm.65},
     zbl = {06938613},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/acirm.65/}
}
TY  - JOUR
AU  - Bobenko, Alexander I.
AU  - Günther, Felix
TI  - Discrete complex analysis – the medial graph approach
JO  - Actes des rencontres du CIRM
PY  - 2013
SP  - 159
EP  - 169
VL  - 3
IS  - 1
PB  - CIRM
UR  - http://www.numdam.org/articles/10.5802/acirm.65/
DO  - 10.5802/acirm.65
LA  - en
ID  - ACIRM_2013__3_1_159_0
ER  - 
%0 Journal Article
%A Bobenko, Alexander I.
%A Günther, Felix
%T Discrete complex analysis – the medial graph approach
%J Actes des rencontres du CIRM
%D 2013
%P 159-169
%V 3
%N 1
%I CIRM
%U http://www.numdam.org/articles/10.5802/acirm.65/
%R 10.5802/acirm.65
%G en
%F ACIRM_2013__3_1_159_0
Bobenko, Alexander I.; Günther, Felix. Discrete complex analysis – the medial graph approach. Actes des rencontres du CIRM, Tome 3 (2013) no. 1, pp. 159-169. doi : 10.5802/acirm.65. http://www.numdam.org/articles/10.5802/acirm.65/

[1] Bobenko, A.I.; Mercat, C.; Suris, Yu.B. Linear and nonlinear theories of discrete analytic functions. Integrable structure and isomonodromic Green’s function, J. Reine Angew. Math., Volume 583 (2005), pp. 117-161 | DOI | MR

[2] Bücking, U. Approximation of conformal mappings by circle patterns, Geom. Dedicata, Volume 137 (2008), pp. 163-197 | DOI | MR | Zbl

[3] Chelkak, D.; Smirnov, S. Discrete complex analysis on isoradial graphs, Adv. Math., Volume 228 (2011), pp. 1590-1630 | DOI | MR | Zbl

[4] Chelkak, D.; Smirnov, S. Universality in the 2D Ising model and conformal invariance of fermionic observables, Invent. Math., Volume 189 (2012) no. 3, pp. 515-580 | DOI | MR | Zbl

[5] Courant, R.; Friedrichs, K.; Lewy, H. Über die partiellen Differentialgleichungen der mathematischen Physik, Math. Ann., Volume 100 (1928), pp. 32-74 | DOI | Zbl

[6] Duffin, R.J. Basic properties of discrete analytic functions, Duke Math. J., Volume 23 (1956) no. 2, pp. 335-363 | DOI | MR

[7] Duffin, R.J. Potential theory on a rhombic lattice, J. Comb. Th., Volume 5 (1968), pp. 258-272 | DOI | MR | Zbl

[8] Ferrand, J. Fonctions préharmoniques et fonctions préholomorphes, Bull. Sci. Math. Ser. 2, Volume 68 (1944), pp. 152-180 | Zbl

[9] Günther, F. Discrete Riemann surfaces and integrable systems, Technische Universität Berlin, September (2014) (Ph. D. Thesis http://opus4.kobv.de/opus4-tuberlin/files/5659/guenther_felix.pdf)

[10] Isaacs, R.Ph. A finite difference function theory, Univ. Nac. Tucumán. Rev. A, Volume 2 (1941), pp. 177-201 | MR

[11] Kenyon, R. Conformal invariance of domino tiling, Ann. Probab., Volume 28 (2002) no. 2, pp. 759-795 | MR | Zbl

[12] Kenyon, R. The Laplacian and Dirac operators on critical planar graphs, Invent. math., Volume 150 (2002), pp. 409-439 | DOI | MR | Zbl

[13] Lelong-Ferrand, J. Représentation conforme et transformations à intégrale de Dirichlet bornée, Gauthier-Villars, Paris, 1955 | Zbl

[14] Mercat, C. Discrete Riemann surfaces and the Ising model, Commun. Math. Phys., Volume 218 (2001) no. 1, pp. 177-216 | DOI | MR | Zbl

[15] Mercat, C. Discrete Riemann surfaces, Handbook of Teichmüller theory. Vol. I (IRMA Lect. Math. Theor. Phys.), Volume 11, Eur. Math. Soc., Zurich (2007), pp. 541-575 | DOI | MR | Zbl

[16] Mercat, C. Discrete complex structure on surfel surfaces, Proceedings of the 14th IAPR international conference on Discrete geometry for computer imagery (DGCI’08), Springer-Verlag, Berlin, Heidelberg (2008), pp. 153-164 | DOI | MR | Zbl

[17] Rodin, B.; Sullivan, D. The convergence of circle packings to the Riemann mapping, J. Diff. Geom., Volume 26 (1987) no. 2, pp. 349-360 | MR | Zbl

[18] Skopenkov, M. The boundary value problem for discrete analytic functions, Adv. Math., Volume 240 (2013), pp. 61-87 | DOI | MR | Zbl

[19] Whitney, H. Product on complexes, Ann. Math., Volume 39 (1938) no. 2, pp. 397-432 | DOI | MR | Zbl

Cité par Sources :