@article{ACIRM_2013__3_1_151_0, author = {Izmestiev, Ivan}, title = {Variational properties of the discrete {Hilbert-Einstein} functional}, journal = {Actes des rencontres du CIRM}, pages = {151--157}, publisher = {CIRM}, volume = {3}, number = {1}, year = {2013}, doi = {10.5802/acirm.64}, zbl = {06938612}, language = {en}, url = {http://www.numdam.org/articles/10.5802/acirm.64/} }
TY - JOUR AU - Izmestiev, Ivan TI - Variational properties of the discrete Hilbert-Einstein functional JO - Actes des rencontres du CIRM PY - 2013 SP - 151 EP - 157 VL - 3 IS - 1 PB - CIRM UR - http://www.numdam.org/articles/10.5802/acirm.64/ DO - 10.5802/acirm.64 LA - en ID - ACIRM_2013__3_1_151_0 ER -
Izmestiev, Ivan. Variational properties of the discrete Hilbert-Einstein functional. Actes des rencontres du CIRM, Courbure discrète : théorie et applications, Volume 3 (2013) no. 1, pp. 151-157. doi : 10.5802/acirm.64. http://www.numdam.org/articles/10.5802/acirm.64/
[1] Existence of a convex polyhedron and of a convex surface with a given metric, Mat. Sbornik, N. Ser., Volume 11(53) (1942), pp. 15-65 (Russian. English summary)
[2] Scalar curvature and the existence of geometric structures on 3-manifolds. I, J. Reine Angew. Math., Volume 553 (2002), pp. 125-182 | DOI | MR | Zbl
[3] Scalar curvature and the existence of geometric structures on 3-manifolds. II, J. Reine Angew. Math., Volume 563 (2003), pp. 115-195 | DOI | MR | Zbl
[4] Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, Berlin, 1987, xii+510 pages | MR | Zbl
[5] Über die Verwirklichung einer geschlossenen Fläche mit vorgeschriebenem Bogenelement im Euklidischen Raum, Sitzungsber. Bayer. Akad. Wiss., Math.-Naturwiss. Abt., Volume No.2 (1937), pp. 229-230 | Zbl
[6] Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 2, pp. 447-505 | DOI | Numdam | MR | Zbl
[7] On compact, Riemannian manifolds with constant curvature. I, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 155-180 | DOI | Zbl
[8] On the curvature of piecewise flat spaces, Comm. Math. Phys., Volume 92 (1984) no. 3, pp. 405-454 | DOI | MR | Zbl
[9] Combinatorial scalar curvature and rigidity of ball packings, Math. Res. Lett., Volume 3 (1996) no. 1, pp. 51-60 | DOI | MR | Zbl
[10] Hyperbolic cusps with convex polyhedral boundary, Geom. Topol., Volume 13 (2009) no. 1, pp. 457-492 | DOI | MR | Zbl
[11] Discrete conformal variations and scalar curvature on piecewise flat two- and three-dimensional manifolds, J. Differential Geom., Volume 87 (2011) no. 2, pp. 201-237 http://projecteuclid.org/getRecord?id=euclid.jdg/1304514973 | MR | Zbl
[12] The Colin de Verdière number and graphs of polytopes, Israel J. Math., Volume 178 (2010), pp. 427-444 | DOI | MR | Zbl
[13] Examples of infinitesimally flexible 3–dimensional hyperbolic cone-manifolds, J. Math. Soc. Japan, Volume 63 (2011) no. 2, pp. 581-598 | MR | Zbl
[14] Infinitesimal rigidity of convex polyhedra through the second derivative of the Hilbert-Einstein functional, Canad. J. Math., Volume 66 (2014) no. 4, pp. 783-825 | DOI | MR | Zbl
[15] Infinitesimal rigidity of polyhedra with vertices in convex position, Pacific J. Math., Volume 248 (2010) no. 1, pp. 171-190 | DOI | MR | Zbl
[16] Nondeformability of Einstein metrics, Osaka J. Math., Volume 15 (1978) no. 2, pp. 419-433 http://projecteuclid.org/getRecord?id=euclid.ojm/1200771282 | MR | Zbl
[17] Infinitesimal rigidity of cone-manifolds and the Stoker problem for hyperbolic and Euclidean polyhedra, J. Differential Geom., Volume 87 (2011) no. 3, pp. 525-576 http://projecteuclid.org/getRecord?id=euclid.jdg/1312998235 | MR | Zbl
[18] General relativity without coordinates, Nuovo Cimento, Volume 19 (1961), pp. 558-571 | DOI | MR
[19] Alexandrov’s Polyhedron Editor, Java Web Start application (http://page.math.tu-berlin.de/ sechel/webstart/AlexandrovPolyhedron.jnlp)
[20] On discrete subgroups of Lie groups, Ann. of Math. (2), Volume 72 (1960), pp. 369-384 | DOI | MR
[21] The deformation theory of hyperbolic cone-3-manifolds with cone-angles less than , Geom. Topol., Volume 17 (2013), 329â367 pages | MR | Zbl
[22] On a deformation of Riemannian structures on compact manifolds, Osaka Math. J., Volume 12 (1960), pp. 21-37 | MR | Zbl
Cited by Sources: