Radiation fields
Bulletin de la Société Mathématique de France, Volume 133 (2005) no. 1, pp. 1-72.

We study the “hyperboloidal Cauchy problem” for linear and semi-linear wave equations on Minkowski space-time, with initial data in weighted Sobolev spaces allowing singular behavior at the boundary, or with polyhomogeneous initial data. Specifically, we consider nonlinear symmetric hyperbolic systems of a form which includes scalar fields with a λφ p nonlinearity, as well as wave maps, with initial data given on a hyperboloid; several of the results proved apply to general space-times admitting conformal completions at null infinity, as well to a large class of equations with a similar non-linearity structure. We prove existence of solutions with controlled asymptotic behavior, and asymptotic expansions for solutions when the initial data have such expansions. In particular we prove that polyhomogeneous initial data (satisfying compatibility conditions) lead to solutions which are polyhomogeneous at the conformal boundary + of the Minkowski space-time.

Nous étudions le « problème de Cauchy hyperboloïdal » pour des équations d’ondes linéaires et semi-linéaires sur l’espace-temps de Minkowski, avec des données initiales, singulières au bord, dans des espaces de Sobolev à poids, où polyhomogènes. Plus précisement, nous considérons une classe de systèmes symétriques hyperboliques non-linéaires, compatibles avec l’équation d’onde scalaire λφ p , ainsi qu’avec des applications d’onde, avec données initiales prescrites sur un hyperboloide. Plusieurs de nos résultats restent valables pour une classe générale d’espace-temps avec complétions conformes à l’infini isotrope, ainsi que pour une large classe d’équations avec une certaine structure des termes non-linéaires. Nous démontrons l’existence de solutions avec comportement asymptotique contrôlé, ainsi que des développements asymptotiques si les données initiales en possèdent. En particulier nous démontrons, sous une condition de compatibilité, que les données initiales polyhomogènes conduisent à des solutions polyhomogènes près du bord conforme + de l’espace-temps de Minkowski.

DOI: 10.24033/bsmf.2478
Classification: 35L40, 58J47
Keywords: wave equations, asymptotic behavior, conformal infinity, polyhomogeneous expansions, singularity propagation, symmetric hyperbolic systems
Mot clés : Équations d'ondes, comportement asymptotique, infini conforme, développements polyhomogènes, propagation de singularités, systèmes symétriques hyperboliques
@article{BSMF_2005__133_1_1_0,
     author = {Chru\'sciel, Piotr T. and Lengard, Olivier},
     title = {Radiation fields},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {1--72},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {133},
     number = {1},
     year = {2005},
     doi = {10.24033/bsmf.2478},
     zbl = {1085.35015},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/bsmf.2478/}
}
TY  - JOUR
AU  - Chruściel, Piotr T.
AU  - Lengard, Olivier
TI  - Radiation fields
JO  - Bulletin de la Société Mathématique de France
PY  - 2005
SP  - 1
EP  - 72
VL  - 133
IS  - 1
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/bsmf.2478/
DO  - 10.24033/bsmf.2478
LA  - en
ID  - BSMF_2005__133_1_1_0
ER  - 
%0 Journal Article
%A Chruściel, Piotr T.
%A Lengard, Olivier
%T Radiation fields
%J Bulletin de la Société Mathématique de France
%D 2005
%P 1-72
%V 133
%N 1
%I Société mathématique de France
%U http://www.numdam.org/articles/10.24033/bsmf.2478/
%R 10.24033/bsmf.2478
%G en
%F BSMF_2005__133_1_1_0
Chruściel, Piotr T.; Lengard, Olivier. Radiation fields. Bulletin de la Société Mathématique de France, Volume 133 (2005) no. 1, pp. 1-72. doi : 10.24033/bsmf.2478. http://www.numdam.org/articles/10.24033/bsmf.2478/

[1] L. Andersson & P. Chruściel - « On “hyperboloidal” Cauchy data for vacuum Einstein equations and obstructions to smoothness of null infinity », Phys. Rev. Lett. 70 (1993), p. 2829-2832. | MR | Zbl

[2] L. Andersson & P. Chruściel - « On “hyperboloidal" Cauchy data for vacuum Einstein equations and obstructions to smoothness of Scri », Commun. Math. Phys. 161 (1994), p. 533-568. | MR | Zbl

[3] -, « On asymptotic behavior of solutions of the constraint equations in general relativity with “hyperboloidal boundary conditions” », Dissert. Math. 355 (1996), p. 1-100. | MR | Zbl

[4] L. Andersson, P. Chruściel & H. Friedrich - « On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einsteins field equations », Commun. Math. Phys. 149 (1992), p. 587-612. | MR | Zbl

[5] B. Berger, P. Chruściel & V. Moncrief - « On asymptotically flat space-times with G 2 invariant Cauchy surfaces », Annals of Phys. 237 (1995), p. 322-354. | MR | Zbl

[6] H. Bondi, M. Van Der Burg & A. Metzner - « Gravitational waves in general relativity VII: Waves from axi-symmetric isolated systems », Proc. Roy. Soc. London A 269 (1962), p. 21-52. | MR | Zbl

[7] J.-M. Bony - « Interaction des singularités pour les équations aux dérivées partielles non linéaires », Goulaouic-Meyer-Schwartz Seminar, 1981/1982, École Polytechnique, Palaiseau, 1982, Exposé II, 12. | Numdam | MR | Zbl

[8] Y. Choquet-Bruhat - « Global existence theorems by the conformal method », Recent developments in hyperbolic equations (Pisa, 1987), Longman Sci. Tech., Harlow, 1988, p. 16-37. | MR | Zbl

[9] -, « Global solutions of Yang-Mills equations on anti-de Sitter spacetime », Classical Quantum Gravity 6 (1989), p. 1781-1789. | MR | Zbl

[10] -, « Global existence of wave maps », Proceedings of the IX International Conference on Waves and Stability in Continuous Media (Bari, 1997), vol. 57, Rend. Circ. Mat. Palermo (2) Suppl., 1998, p. 143-152. | MR | Zbl

[11] Y. Choquet-Bruhat & C. H. Gu - « Existence globale d’applications harmoniques sur l’espace-temps de Minkowski M 3 », 308 (1989), p. 167-170. | MR | Zbl

[12] Y. Choquet-Bruhat & N. Noutchegueme - « Solutions globales du système de Yang-Mills-Vlasov (masse nulle) », 311 (1990), p. 785-788. | MR | Zbl

[13] D. Christodoulou - « Global solutions of nonlinear hyperbolic equations for small initial data », 39 (1986), p. 267-282. | MR | Zbl

[14] D. Christodoulou & A. S. Tahvildar-Zadeh - « On the asymptotic behavior of spherically symmetric wave maps », 71 (1993), p. 31-69. | MR | Zbl

[15] -, « On the regularity of spherically symmetric wave maps », 46 (1993), p. 1041-1091. | MR | Zbl

[16] P. Chruściel & O. Lengard - « Polyhomogeneous solutions of wave equations in the radiation regime », Journées équations aux dérivées partielles, Nantes, 5-9 June 2000 (X. Saint Raymond, N. Depauw & D. Robert, éds.), http://www.math.sciences.univ-nantes.fr/edpa/2000, p. II.1-III.17. | MR | Zbl

[17] P. Chruściel, M. Maccallum & D. Singleton - « Gravitational waves in general relativity. XIV: Bondi expansions and the “polyhomogeneity” of Scri », Phil. Trans. Roy. Soc. London A 350 (1995), p. 113-141. | MR | Zbl

[18] J. Corvino - « Scalar curvature deformation and a gluing construction for the Einstein constraint equations », 214 (2000), p. 137-189. | MR | Zbl

[19] J. Corvino & R. Schoen - « Vacuum spacetimes which are identically Schwarzschild near spatial infinity », talk given at the Santa Barbara Conference on Strong Gravitational Fields, June 22-26 (1999), http://doug-pc.itp.ucsb.edu/online/gravity_c99/schoen.

[20] H. Friedrich - « Cauchy problem for the conformal vacuum field equations in general relativity », 91 (1983), p. 445-472. | MR | Zbl

[21] -, « Existence and structure of past asymptotically simple solutions of Einstein's field equations with positive cosmological constant », J. Geom. Phys. 3 (1986), p. 101-117. | MR | Zbl

[22] -, « On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure », 107 (1986), p. 587-609. | MR | Zbl

[23] -, « On the global existence and the asymptotic behavior of solutions to the Einstein-Maxwell-Yang-Mills equations », J. Diff. Geom. 34 (1991), p. 275-345. | MR | Zbl

[24] -, « Einstein equations and conformal structure: Existence of anti-de-Sitter-type space-times », J. Geom. and Phys. 17 (1995), p. 125-184. | MR | Zbl

[25] -, « Einstein's equation and geometric asymptotics », Gravitation and Relativity: At the turn of the Millennium (N. Dahdich & J. Narlikar, éds.), IUCAA, Pune, 1998, Proceedings of GR15, p. 153-176.

[26] H. Friedrich & B. Schmidt - « Conformal geodesics in general relativity », Proc. Roy. Soc. London Ser. A 414 (1987), p. 171-195. | MR | Zbl

[27] L. Hörmander - « The boundary problems of physical geodesy », Arch. Rat. Mech. Analysis 62 (1976), p. 1-52. | Zbl

[28] M. Joshi - « A commutator proof of the propagation of polyhomogeneity for semi-linear equations », Commun. Partial Diff. Eq. 22 (1997), p. 435-463. | MR | Zbl

[29] J. Kroon - « Polyhomogeneity and zero-rest-mass fields with applications to Newman-Penrose constants », Class. Quantum Grav. 17 (2000), no. 3, p. 605-621. | MR | Zbl

[30] O. Lengard - « Solutions of wave equations in the radiation regime », Thèse, Université de Tours, 2001.

[31] R. Melrose & N. Ritter - « Interaction of nonlinear progressing waves for semilinear wave equations », 121 (1985), p. 187-213. | MR | Zbl

[32] R. Newman - « The global structure of simple space-times », 123 (1989), p. 17-52. | MR | Zbl

[33] R. Penrose - « Zero rest-mass fields including gravitation », Proc. Roy. Soc. London A284 (1965), p. 159-203. | MR | Zbl

[34] R. Sachs - « Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time », Proc. Roy. Soc. London A 270 (1962), p. 103-126. | MR | Zbl

[35] M. Taylor - Partial differential equations, Springer, New York, Berlin, Heidelberg, 1996. | MR | Zbl

[36] A. Trautman - « King's College Lecture Notes on General Relativity », mimeographed notes; reprinted in Gen. Rel. Grav. 34 (2002), p.721-762, May-June 1958. | Zbl

[37] -, « Radiation and boundary conditions in the theory of gravitation », Bull. Acad. Pol. Sci., Série sci. math., astr. et phys. VI (1958), p. 407-412. | MR | Zbl

[38] R. Wald - General relativity, University of Chicago Press, Chicago, 1984. | MR | Zbl

Cited by Sources: