Le théorème des idempotents dans B(G)
Bulletin de la Société Mathématique de France, Tome 114 (1986), pp. 215-223.
@article{BSMF_1986__114__215_0,
     author = {Host, B.},
     title = {Le th\'eor\`eme des idempotents dans $B(G)$},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {215--223},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {114},
     year = {1986},
     doi = {10.24033/bsmf.2055},
     mrnumber = {88b:43003},
     zbl = {0606.43002},
     language = {fr},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2055/}
}
TY  - JOUR
AU  - Host, B.
TI  - Le théorème des idempotents dans $B(G)$
JO  - Bulletin de la Société Mathématique de France
PY  - 1986
SP  - 215
EP  - 223
VL  - 114
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2055/
DO  - 10.24033/bsmf.2055
LA  - fr
ID  - BSMF_1986__114__215_0
ER  - 
%0 Journal Article
%A Host, B.
%T Le théorème des idempotents dans $B(G)$
%J Bulletin de la Société Mathématique de France
%D 1986
%P 215-223
%V 114
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2055/
%R 10.24033/bsmf.2055
%G fr
%F BSMF_1986__114__215_0
Host, B. Le théorème des idempotents dans $B(G)$. Bulletin de la Société Mathématique de France, Tome 114 (1986), pp. 215-223. doi : 10.24033/bsmf.2055. https://www.numdam.org/articles/10.24033/bsmf.2055/

[1] Cohen (P. J.). - On a conjecture of Littlewood and idempotents measures, Amer. J. Math., vol. 82, 1960, p. 191-212. | MR | Zbl

[2] Cohen (P. J.). - On homomorphisms of groups algebras, Amer. J. Math., vol. 82, 1960, p. 213-226. | MR | Zbl

[3] Dixmier (J.). - Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1969. | MR | Zbl

[4] Eymard (P.). - L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. Fr., vol. 92, 1964, p. 181-236. | Numdam | MR | Zbl

[5] Lefranc (M.). - Sur certaines algèbres de fonctions sur un groupe, C.R. Acad. Sc., t. 274, 1972, p. 1882-1883. | MR | Zbl

[6] Rudin (W.). - Fourier analysis on groups, Interscience tracts in Math. n° 12, Interscience, New York, 1962. | MR | Zbl

  • Anoussis, M.; Eleftherakis, G.K.; Katavolos, A. Homomorphisms of L1 algebras and Fourier algebras, Journal of Mathematical Analysis and Applications, Volume 531 (2024) no. 2, p. 127824 | DOI:10.1016/j.jmaa.2023.127824
  • Lin, Ying-Fen; Oi, Shiho Linear preservers on idempotents of Fourier algebras, Canadian Mathematical Bulletin, Volume 66 (2023) no. 4, p. 1326 | DOI:10.4153/s0008439523000395
  • Ahmadpoor, Mohammad Ali; Shams Yousefi, Marzieh On the Functorial Properties of the p-Analog of the Fourier–Stieltjes Algebras, Iranian Journal of Science, Volume 47 (2023) no. 1, p. 109 | DOI:10.1007/s40995-022-01361-y
  • Chou, Ching Multiplier norm of finite subsets of discrete groups, Proceedings of the American Mathematical Society, Volume 150 (2022) no. 8, p. 3405 | DOI:10.1090/proc/15867
  • Sanders, Tom Coset decision trees and the Fourier algebra, Journal d'Analyse Mathématique, Volume 144 (2021) no. 1, p. 227 | DOI:10.1007/s11854-021-0179-y
  • Ilie, Monica; Roydor, Jean On \varvecp-completely contractive homomorphisms of Figà-Talamanca–Herz algebras, Archiv der Mathematik, Volume 115 (2020) no. 1, p. 89 | DOI:10.1007/s00013-020-01454-3
  • Sanders, Tom Bounds in Cohen’s Idempotent Theorem, Journal of Fourier Analysis and Applications, Volume 26 (2020) no. 2 | DOI:10.1007/s00041-020-09732-y
  • Mustafayev, Heybetkulu Mean Ergodic Theorems for Multipliers on Banach Algebras, Journal of Fourier Analysis and Applications, Volume 25 (2019) no. 2, p. 393 | DOI:10.1007/s00041-017-9587-x
  • Ohrysko, Przemysław; Wasilewski, Mateusz Spectral theory of Fourier–Stieltjes algebras, Journal of Mathematical Analysis and Applications, Volume 473 (2019) no. 1, p. 174 | DOI:10.1016/j.jmaa.2018.12.040
  • Mbekhta, Mostafa; Neufang, Matthias On the structure of ideals and multipliers: A unified approach, Proceedings of the American Mathematical Society, Volume 147 (2019) no. 11, p. 4757 | DOI:10.1090/proc/14676
  • kasprzak, Paweł Shifts of group-like projections and contractive idempotent functionals for locally compact quantum groups, International Journal of Mathematics, Volume 29 (2018) no. 13, p. 1850092 | DOI:10.1142/s0129167x18500921
  • Ricard, É.; Roydor, J. Almost contractive maps between C⁎-algebras with applications to Fourier algebras, Journal of Functional Analysis, Volume 275 (2018) no. 1, p. 196 | DOI:10.1016/j.jfa.2017.11.012
  • Kaniuth, E.; Lau, A.T.; Ülger, A. The Rajchman algebra B0(G) of a locally compact group G, Bulletin des Sciences Mathématiques, Volume 140 (2016) no. 3, p. 273 | DOI:10.1016/j.bulsci.2015.12.002
  • Alaghmandan, Mahmood; Spronk, Nico Amenability properties of the central Fourier algebra of a compact group, Illinois Journal of Mathematics, Volume 60 (2016) no. 2 | DOI:10.1215/ijm/1499760019
  • Runde, Volker; Uygul, Faruk Connes-amenability of Fourier–Stieltjes algebras, Bulletin of the London Mathematical Society, Volume 47 (2015) no. 4, p. 555 | DOI:10.1112/blms/bdv030
  • Ilie, Monica A note on p-completely bounded homomorphisms of the Figà-Talamanca–Herz algebras, Journal of Mathematical Analysis and Applications, Volume 419 (2014) no. 1, p. 273 | DOI:10.1016/j.jmaa.2014.04.060
  • Kaniuth, Eberhard; Ülger, Ali The structure of power bounded elements in Fourier–Stieltjes algebras of locally compact groups, Bulletin des Sciences Mathématiques, Volume 137 (2013) no. 1, p. 45 | DOI:10.1016/j.bulsci.2012.02.008
  • Shravan Kumar, N. Ideals with bounded approximate identities in the Fourier algebras on homogeneous spaces, Indagationes Mathematicae, Volume 24 (2013) no. 1, p. 1 | DOI:10.1016/j.indag.2012.06.002
  • Cowling, Michael G. Isomorphisms of the Figà-Talamanca-Herz algebras A p (G) for connected Lie groups G, Colloquium De Giorgi 2009 (2012), p. 1 | DOI:10.1007/978-88-7642-387-1_1
  • Forrest, Brian E.; Runde, Volker Norm One Idempotent cb-Multipliers with Applications to the Fourier Algebra in the cb-Multiplier Norm, Canadian Mathematical Bulletin, Volume 54 (2011) no. 4, p. 654 | DOI:10.4153/cmb-2011-098-0
  • Sanders, Tom A Quantitative Version of the Non-Abelian Idempotent Theorem, Geometric and Functional Analysis, Volume 21 (2011) no. 1, p. 141 | DOI:10.1007/s00039-010-0107-2
  • Stokke, Ross Homomorphisms of convolution algebras, Journal of Functional Analysis, Volume 261 (2011) no. 12, p. 3665 | DOI:10.1016/j.jfa.2011.08.014
  • Lin, Ying-Fen Completely bounded disjointness preserving operators between Fourier algebras, Journal of Mathematical Analysis and Applications, Volume 382 (2011) no. 1, p. 469 | DOI:10.1016/j.jmaa.2011.04.062
  • Kaniuth, Eberhard; Ülger, Ali The Bochner-Schoenberg-Eberlein property for commutative Banach algebras, especially Fourier and Fourier-Stieltjes algebras, Transactions of the American Mathematical Society, Volume 362 (2010) no. 8, p. 4331 | DOI:10.1090/s0002-9947-10-05060-9
  • Ilie, Monica; Stokke, Ross Extension of Fourier algebra homomorphisms to duals of algebras of uniformly continuous functionals, Journal of Functional Analysis, Volume 256 (2009) no. 8, p. 2518 | DOI:10.1016/j.jfa.2008.10.003
  • ILIE, MONICA; STOKKE, ROSS Weak*- continuous homomorphisms of Fourier–Stieltjes algebras, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 145 (2008) no. 1, p. 107 | DOI:10.1017/s0305004108001199
  • Runde, Volker Cohen–Host type idempotent theorems for representations on Banach spaces and applications to Figà-Talamanca–Herz algebras, Journal of Mathematical Analysis and Applications, Volume 329 (2007) no. 1, p. 736 | DOI:10.1016/j.jmaa.2006.07.007
  • Ilie, Monica; Spronk, Nico The spine of a Fourier-Stieltjes algebra, Proceedings of the London Mathematical Society, Volume 94 (2007) no. 2, p. 273 | DOI:10.1112/plms/pdl002
  • Graham, Colin; Lau, Anthony Relative weak compactness of orbits in Banach spaces associated with locally compact groups, Transactions of the American Mathematical Society, Volume 359 (2006) no. 3, p. 1129 | DOI:10.1090/s0002-9947-06-04039-6
  • Ilie, Monica; Spronk, Nico Completely bounded homomorphisms of the Fourier algebras, Journal of Functional Analysis, Volume 225 (2005) no. 2, p. 480 | DOI:10.1016/j.jfa.2004.11.011
  • Forrest, Brian E.; Runde, Volker Amenability and weak amenability of the Fourier algebra, Mathematische Zeitschrift, Volume 250 (2005) no. 4, p. 731 | DOI:10.1007/s00209-005-0772-2
  • Runde, Volker The amenability constant of the Fourier algebra, Proceedings of the American Mathematical Society, Volume 134 (2005) no. 5, p. 1473 | DOI:10.1090/s0002-9939-05-08164-5
  • Ilie, Monica On Fourier algebra homomorphisms, Journal of Functional Analysis, Volume 213 (2004) no. 1, p. 88 | DOI:10.1016/j.jfa.2004.04.013
  • Forrest, B.; Kaniuth, E.; Lau, A.T.; Spronk, N. Ideals with bounded approximate identities in Fourier algebras, Journal of Functional Analysis, Volume 203 (2003) no. 1, p. 286 | DOI:10.1016/s0022-1236(02)00121-0
  • Ülger, A. A characterization of the closed unital ideals of the Fourier–Stieltjes algebra B(G) of a locally compact amenable group G, Journal of Functional Analysis, Volume 205 (2003) no. 1, p. 90 | DOI:10.1016/s0022-1236(03)00143-5
  • Forrest, Brian; Skantharajah, Mahatheva A note on a type of approximate identity in the Fourier algebra, Proceedings of the American Mathematical Society, Volume 120 (1994) no. 2, p. 651 | DOI:10.1090/s0002-9939-1994-1166356-7
  • Forrest, Brian Amenability and the structure of the algebras 𝐴_𝑝(𝐺), Transactions of the American Mathematical Society, Volume 343 (1994) no. 1, p. 233 | DOI:10.1090/s0002-9947-1994-1181182-5
  • Forrest, Brian Amenability and ideals in A(G), Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, Volume 53 (1992) no. 2, p. 143 | DOI:10.1017/s1446788700035758

Cité par 38 documents. Sources : Crossref