La K-théorie stable
Bulletin de la Société Mathématique de France, Volume 110 (1982), pp. 381-416.
@article{BSMF_1982__110__381_0,
     author = {Kassel, Christian},
     title = {La {K-th\'eorie} stable},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {381--416},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {110},
     year = {1982},
     doi = {10.24033/bsmf.1969},
     zbl = {0507.18003},
     mrnumber = {84f:18018},
     language = {fr},
     url = {http://www.numdam.org/articles/10.24033/bsmf.1969/}
}
TY  - JOUR
AU  - Kassel, Christian
TI  - La K-théorie stable
JO  - Bulletin de la Société Mathématique de France
PY  - 1982
DA  - 1982///
SP  - 381
EP  - 416
VL  - 110
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/bsmf.1969/
UR  - https://zbmath.org/?q=an%3A0507.18003
UR  - https://www.ams.org/mathscinet-getitem?mr=84f:18018
UR  - https://doi.org/10.24033/bsmf.1969
DO  - 10.24033/bsmf.1969
LA  - fr
ID  - BSMF_1982__110__381_0
ER  - 
%0 Journal Article
%A Kassel, Christian
%T La K-théorie stable
%J Bulletin de la Société Mathématique de France
%D 1982
%P 381-416
%V 110
%I Société mathématique de France
%U https://doi.org/10.24033/bsmf.1969
%R 10.24033/bsmf.1969
%G fr
%F BSMF_1982__110__381_0
Kassel, Christian. La K-théorie stable. Bulletin de la Société Mathématique de France, Volume 110 (1982), pp. 381-416. doi : 10.24033/bsmf.1969. http://www.numdam.org/articles/10.24033/bsmf.1969/

[1] Anderson (D. W.). - Chain functors and homology theories, Symp. Alg. Top. 1971, Springer Lect. Notes in Math. n° 249, 1-12. | MR | Zbl

[2] Dennis (R. K.). - Algebraic K-theory and Hochschild homology, exposé (non publié), Conf. Evanston, janvier 1976.

[3] Dwyer (W.). - Twisted homological stability for general linear groups, Ann. of Math. 111 (1980), 239-251. | MR | Zbl

[4] Evens (L.) et Friedlander (E.). - On K*(ℤ/p2ℤ) and related homology groups, Trans. A.M.S. 270 (1982), 1-46. | MR | Zbl

[5] Farrell (T.) et Hsiang (W. C.). - On the rational homotopy groups of the diffeomorphism groups of spheres, discs and aspherical manifolas, Proc. Symp. Pure Math. 32 (1978) I, 325-338. | Zbl

[6] Igusa (K.). - What happens to Hatcher and Wagoner's formula for π0C(M) when the first Postnikov invariant of M is non-trivial ?, préprint Brandeis U.

[7] Kan (D. M.). - A combinatorial definition of homotopy groups, Ann. of Math. 67 (1958), 282-312. | MR | Zbl

[8] Vander Kallen (W.). - Homology stability for linear groups, Inv. Math. 60 (1980), 269-295. | MR | Zbl

[9] Kassel (C.). - Calcul algébrique de l'homologie de certains groupes de matrices, à paraître au Journal of Algebra (1982). | Zbl

[10] Kassel (C.). - K-théorie relative d'un idéal bilatère de carré nul, Conf. K-théorie alg. Evanston 1980, Springer Lect. Notes in Math. n° 854, 249-261. | MR | Zbl

[11] Kassel (C.). - Homologie du groupe linéaire général et K-théorie stable, Thèse, Université de Strasbourg, juin 1981.

[12] Kassel (C.). - Stabilisation de la K-théorie algébrique des espaces topologiques, à paraître aux Ann. Sc. E.N.S. 15 (1982). | Numdam | Zbl

[13] Lang (S.). - Algebra, Addison Wesley (1965). | MR | Zbl

[14] Loday (J.-L.). - K-théorie algébrique et représentations de groupes, Ann. Sc. E.N.S. 9 (1976), 309-377. | Numdam | MR | Zbl

[15] Loday (J.-L.). - Homotopie des espaces de concordances, Sém. Bourbaki n° 516, Springer Lect. Notes in Math. n° 710. | Numdam | Zbl

[16] Maclane (S.). - Homology, Springer Verlag (1963). | MR | Zbl

[17] May (J. P.). - Simplicial objects in algebraic topology, Van Nostrand (1967). | MR | Zbl

[18] May (J. P.). - A∞-ring spaces and algebraic K-theory, Springer Lect. Notes in Math. n° 658, 240-315. | MR | Zbl

[19] Raghunathan (M. S.). - A note on quotients of real algebraic groups by arithmetic subgroups, Inv. Math. 4 (1968), 318-335. | MR | Zbl

[20] Serre (J.-P.). - Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. 58 (1953), 258-294. | MR | Zbl

[21] Snaith (V.). - On K3 of dual numbers, preprint Western Ontario 1980.

[22] Stallings (J.). - Centerless groups, an algebraic formulation of Gottlieb's theorem, Topology 4 (1965), 129-134. | MR | Zbl

[23] Waldhausen (F.). - Algebraic K-theory of topological spaces I, Proc. Symp. Pure Math. 32 (1978), 35-60. | MR | Zbl

[24] Waldhausen (F.). - Algebraic K-theory of topological spaces II, Springer Lect. Notes in Math. n° 763 (1979), 356-394. | MR | Zbl

[25] Whitehead (G. W.). - Elements of homotopy theory, Springer Verlag (1978). | MR | Zbl

Cited by Sources: